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ABSTRACT
Group fairness is achieved by equalising prediction distributions

between protected sub-populations; individual fairness requires

treating similar individuals alike. These two objectives, however,

are incompatible when a scoring model is calibrated through discon-
tinuous probability functions, where individuals can be randomly

assigned an outcome determined by a fixed probability. This proce-

dure may provide two similar individuals from the same protected

group with classification odds that are disparately different – a

clear violation of individual fairness. Assigning unique odds to

each protected sub-population may also prevent members of one

sub-population from ever receiving the chances of a positive out-

come available to individuals from another sub-population, which

we argue is another type of unfairness called individual odds. We

reconcile all this by constructing continuous probability functions

between group thresholds that are constrained by their Lipschitz

constant. Our solution preserves the model’s predictive power, in-

dividual fairness and robustness while ensuring group fairness.
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1 INTRODUCTION
Predictive models that output a score or probability for a multi-

dimensional input, i.e., scoring functions, are a common tool in

automated decision-making [12, 13]. Binary classification is a pop-

ular realisation of this paradigm, where a threshold is placed on

a score to produce a decision; among others, it can be found in

school examinations where individual answers are condensed into

a grade that translates to a pass/fail mark [37], or banking where

the history of personal finances is compressed into a credit score

that captures one’s likelihood of defaulting on a loan [27]. Many

such applications, especially in high stakes domains like healthcare,

finance and judiciary, are coming under increased scrutiny given

their potential harm to society – predictive models deployed in

these contexts are expected to be accurate, robust, fair and explain-

able. These four desiderata, however, are often at odds. Improving

utility, i.e., predictive power, of a model may entail increasing its

complexity at the expense of interpretability and robustness, e.g.,

due to overfitting [4, 46]. Similarly, equalising errors between pro-

tected groups to ensure fairness may require sacrificing utility and

impairing other notions of fairness [14, 41].

In this paper we focus on the latter scenario, where (protected)

sub-populations are treated differently, thus unfairly, due to persis-

tent historical biases [10], training data under-representation [11]

and greedy optimisation of an objective function. Correcting for

these biases is often challenging as it requires detailed knowledge

of the data domain and the input space. One popular solution to this

problem, which we study here, is threshold optimisation under fair-

ness constraints when dealing with multiple protected groups. This

method relies on calculating unique decision functions based on

scores for each protected group in order to satisfy a given fairness

constraint, e.g., demographic parity [39].

We re-examine this approach, as finding a set of thresholds for

a given score function that satisfy multiple fairness constraints –

such as equalised odds [3] – is often impossible if only using a

collection of single thresholds. Instead, a decision function that

is optimal with respect to a definition of group fairness selected

by the model owner is derived directly from the scoring function

using a pair of thresholds for each group. Outputs that fall between

the thresholds are allocated a random decision based on a fixed
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Figure 1: Two-threshold fixed randomisation [22] applied to probabilities (y-axis) output by a loan repayment classifier built
upon credit scores (x-axis). It satisfies equalised odds for the binary protected attribute race (black andwhite) by using it to assign
approval probabilities, but results in discontinuities that violate individual fairness and create a gap between group-specific
individual odds.

probability parameter – a procedure called fixed randomisation –

which, while effective, exhibits a number of shortcomings demon-

strated by Figure 1 and discussed later in Section 3. Using a fixed

randomisation parameter is suboptimal for both the entities that

create the model (owners) and those whose case is being decided

by the model (users) because:

(1) if the scoring function is accurate, the decision function

cannot leverage this in the intervals between the thresholds;

(2) even if the scoring function is individually fair, the step-

based decision function is not, e.g., users whose scores are

just under a threshold are treated very differently to those

who are barely above it, despite their scores being similar

(commonly referred to as the threshold effect [32]); and
(3) users from one protected group may be unable to access

the odds of positive classification offered to another group

(equalised individual odds unfairness).

Consider the fixed randomisation solution shown in Figure 1,

which satisfies equalised odds for the two values of the protected

attribute race in a loan allocation setting using fixed randomisation.

For example, a white user with a credit score of 49.5 is assigned

the same odds (50%) of receiving a loan as a white user whose

credit score is 25 despite the latter being 6.6 times more likely to

default than the former. This stands in stark contrast to a white user
with a credit score of 24.5 (just below the threshold) who has no

chance of getting a loan despite being only 1.03 times more likely

to default than the aforementioned white user with a credit score of

25. This case study illustrates that an increase in credit score – and

therefore an increase in the likelihood of repaying a loan – is not

reflected in the final decision for all scores except at the thresholds.

In addition, while some white users have a 50% chance of receiving

a loan and some black users have a 97.2% chance, these success odds

are never offered to the other group; therefore, a white user will
never be given a 97.2% chance of receiving a loan and vice versa.

This disparity motivates a new notion of fairness – called equalised
individual odds – which we outline in Definition 3.2 in Section 3.

We address these shortcomings by deriving a set of closed-form,

continuous, monotonic functions (shown later in Figure 4) parame-

terised only by the thresholds and a probability parameter, making

them easy to compute (Section 4.2). We show that these functions

are constrained via a maximum derivative, preventing a change

in score leading to a large shift in classification odds and thus

maintaining individual fairness and softening the threshold effect

(Section 4.3). Our approach enables the model owners to prioritise

users with higher scores, better honouring the underlying score

distribution as well as improving the transparency of the process.

These properties incentivises users to increase their score as such

an action improves their odds of a positive outcome – see Figure 3

for a direct comparison to Figure 1. We analyse our method in two

case studies – through the lens of credit scoring for loan allocation

in Section 5.1, and risk of recidivism in Section 5.2. For the credit

scoring case study we seek equalised odds across the four values of

the race attribute – non-Hispanic white (white), black, Hispanic and

Asian – found in the 2003 TransUnion TransRisks Scores (CreditRisk)
data set [38], whereas for the recidivism case study we enforce

equalised odds across a combination of two races – Caucasian and

African America – and two sexes – male and female – found in

the 2016 ProPublica Recidivism Risk Score (COMPAS) data set [38].

In both cases, we show that individual fairness is improved while

group fairness and accuracy are preserved. In summary, our contri-

bution is threefold: (1) we demonstrate that fixed randomisation

for group fairness violates individual fairness; (2) we derive a set of

closed-form, continuous and monotonic probability functions; and

(3) we show that these continuous curves preserve group fairness

and improve performance while adhering to the constraint imposed

by individual fairness.

2 PRELIMINARIES
2.1 Notation
We assume that the scalar scoring function 𝑔 : X ↦→ R takes in-

dividual instances and outputs a score R ⊆ R; ℎ : R ↦→ Y, where

Y ≡ {0, 1}, is an arbitrary, possibly stochastic, binary decision func-

tion on R that maps the scores 𝑅 to predicted classes 𝑌 according

to a predetermined probability distribution P{𝑌 = 1

��𝑅 = 𝑟 }. Lower
case letters denote an individual instance from a sample, e.g., x
is an instance in 𝑋 . Functions denoted by Greek letters, such as

𝜁 : R ↦→ I where I ≡ [0, 1], parameterise this probability based on

scores, e.g., according to the Bernoulli distributionℎ(𝑟 ) ∼ 𝐵
(
1, 𝜁 (𝑟 )

)
.

Effectively,ℎ(𝑟 ) is the probability that𝑌 = 1 for𝑅 = 𝑟 . Alternatively,

for deterministic behaviour 𝜁 can be defined by a single threshold

𝑡 ∈ R, where a score 𝑟 ≥ 𝑡 yields ℎ(𝑟 ) = 1 and 𝑟 < 𝑡 yields ℎ(𝑟 ) = 0;
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this behaviour can be captured by the indicator function

𝜁 (𝑟 ) = 1𝑡 (𝑟 ) =
{
0 if 𝑟 < 𝑡

1 if 𝑟 ≥ 𝑡
.

One common realisation of this thresholding function is a binary

probabilistic classifier, where R ≡ I and 𝑡 = 0.5. We therefore

define the final decision function 𝑓ℎ : X ↦→ Y as the composition

𝑓ℎ = ℎ ◦ 𝑔, where the subscript on 𝑓 indicates the composition

function ℎ on the scoring function 𝑔. Additionally, capital letters

refer to samples from spaces, such that𝑋 is a sample from the space

X; 𝑔(𝑋 ) = 𝑅 are the corresponding scores calculated by 𝑔 for the

sample 𝑋 ; 𝑓 (𝑋 ) = 𝑌 are classes predicted for all instances in the

sample 𝑋 ; and 𝑌 captures their ground truth labels. We denote the

protected attribute as𝐴, and consider the joint distribution (𝑅,𝐴,𝑌 ).
We make no assumptions on the type or shape of X, nor on the

construction of 𝑔 (the behaviour of which is discussed in Section 3).

2.2 Distance and Similarity Measures
Defining “similar individuals” can be challenging and is deeply

rooted in the landscape and shape of the input space, the complex-

ity of the problem, and the density and distribution of the training

data 𝑋 within the space. Distances on metric spaces, regardless of

their definition, must follow a set of axioms (outlined in Appen-

dix A). This problem is also not strictly mathematical and depends

highly on the context. Additionally, discrete or categorical data

can be difficult to quantify and compare; for example, in a feature

space of size 𝑁 , how different is an unmarried individual from a

married person, all other things being equal? One could argue that

its importance depends on the size of 𝑁 – a large value of 𝑁 can

dilute the importance of each individual feature. If we are trying

to predict whether an individual has any children, however, this

feature is of high importance regardless of the size of 𝑁 . To best

capture such dependencies, we can employ similarity graphs or

bespoke distance metrics chosen based on the problem definition

and the data set at hand.

Using tailor-made definitions of similarity, nonetheless, poses

two issues: (1) it makes it difficult to compare results between ex-

periments; and (2) the results are subject to the quality of the metric

and its suitability for the problem at hand. We operate under the

assumption that model inputs are inaccessible (simulating scenarios

where data and model parameters are protected and/or private),

thus we are only given scores, values of the protected attribute

and the label (ground truth). For our work we therefore rely on

generic distance metrics such as Euclidean, Hamming and Gower’s

distances. Note that we assume that changing the protected class 𝐴

for an individual is too large of a change to label the two instances

as similar since this alteration entails using a different set of thresh-

olds and probabilities in the final decision function. Examples of

classical distance functions are presented in Appendix A.

2.3 Related Work
Group and individual fairness are two commonly considered cat-

egories [7]. Group fairness focuses on the statistical difference

in outcomes between sub-populations determined by the values of

a protected attribute 𝐴 [5]. The type of statistical outcome that a

model owner maywant to focus on is domain-specific, but measures

closer to 0 are more desirable as this indicates no statistical differ-

ence between two groups. For a simple case of a binary protected

feature 𝐴 = {𝑎, 𝑎′} where 𝑎 ∩ 𝑎′ = ∅, we can further differentiate

two types of group fairness [9]:

Outcome Predictions are equalised in a set way across groups, e.g.,

demographic parity [1]:���P{𝑌 = 1

��𝐴 = 𝑎} − P{𝑌 = 1

��𝐴 = 𝑎′}
��� = 0 .

An example of demographic parity may be in school ad-

missions [44], where the distribution of admitted students

should represent the distribution of the applicants for each

value of 𝐴 (i.e., if applicants are 50% male and 50% female,

admissions should reflect this pattern).

Error Distribution (In)correct classifications should be equalised

in a predetermined way, e.g., using false negative rate:���P{𝑌 = 0

��𝐴 = 𝑎,𝑌 = 1} − P{𝑌 = 0

��𝐴 = 𝑎′, 𝑌 = 1}
��� = 0 .

An example of equalising false negative rate may be in the

medical field, where false negatives could have dire conse-

quences for a patient. Erring on the side of caution equally

for all groups is therefore more preferable, up to a certain

cost [31].

There are many ways in which group fairness can be opera-

tionalised, with different tasks and domains requiring a specific

constraint or a mixture thereof. In this paper, we mainly consider

one of the strongest fairness constraints called equalised odds [33],
which is outlined in Definition 2.1.

Definition 2.1 (Eqalised Odds). A decision function 𝑓 : X ↦→
Y satisfies equalised odds with respect to a protected attribute 𝐴 if
false positives and true positives are independent of the protected
attribute:���P{𝑌 = 1

��𝐴 = 𝑎,𝑌 = 𝑦} − P{𝑌 = 1

��𝐴 = 𝑎′, 𝑌 = 𝑦}
��� = 0

∀𝑦 ∈ Y ∀𝑎, 𝑎′ ∈ 𝐴 𝑎 ≠ 𝑎′ .

A large portion of fairness research inmachine learning therefore

focuses on equalising outcomes and errors between users who

belong to different protected groups, such as race or sex [28]. There

are three distinct areas where fairness can be injected into a data

modelling pipeline:

pre-processing transforms the underlying training data such that

signals and cross-correlations causing bias and discrimina-

tion are weakened [8];

in-processing incorporates fairness constraints directly into the

optimisation objective [40]; and

post-processing alters the output of a decision-making process

to mitigate bias of the underlying (fixed) model [25].

A variety of methods is needed as even when the scoring function

is trained as “unaware” [15], and as such has no knowledge of the

value of the protected class𝐴, 𝑓 can still become unfair. For example,

the ground truth𝑌 may be correlated with𝐴 due to historical biases,

some features in𝑋 may act as a proxy, or the distribution/behaviour

of some features in 𝑋 may be different between sub-populations,

causing a predictive model to under-perform for under-represented

groups. A different strand of work looks into fair data collection [43]

and feature selection [20] as well as fair learning procedures, e.g.,
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adversarial learning [45]. In this paper, we focus on a popular class

of post-processing methods known as threshold optimisation. Our
work builds directly upon the foundational method introduced by

Hardt et al. [22] by expanding and improving it along multiple

dimensions.

A slightly more nuanced view on fairness is the notion of

“treating similar individuals similarly”, known as individual fair-
ness [30]. In short, we look to impose a constraint on the distance

between any two points (individuals) in the input space against

their distance in the output space [15]. We measure distance or

similarity using distance functions 𝑑 on the input (𝑑X ) and output

(𝑑R ) spaces:

𝑑R (𝑔(x1), 𝑔(x2)) ≤ 𝐿X𝑑X (x1, x2)

=⇒ 𝑑R (𝑟1, 𝑟2)
𝑑X (x1, x2)

≤ 𝐿X ∀x1, x2 ∈ X ,

where 𝑟𝑘 = 𝑔(x𝑘 ) and 𝐿X ≥ 0 is a Lipschitz constant (refer to Sec-

tion 2.2 for a discussion of distance metrics). The Lipschitz constant

describes themaximal difference of the distance between two values

in the input space with their corresponding distance in the output

space. Limiting 𝐿X is usually done with a smoothing process, e.g.,

manifold regularisation [6], or by constraining the optimisation of

𝑔 subject to a condition on the size of 𝐿X . The concept is to assume

that individuals with similar features (small𝑑X ) should appear close
together in the output space (small 𝑑R ). Therefore, limiting the rate

at which 𝑔 can change (i.e., its differential) in densely populated

areas of the feature space can force 𝑔 to be smoother, hence more

fair. 𝑑X can be as simple as Gower’s distance for mixed categorical

and numerical features (see Appendix A), but ideally should be

chosen appropriately for the problem at hand; since R is scalar, we

can define 𝑑R (𝑔(x1), 𝑔(x2)) = |𝑟1 − 𝑟2 |.

3 POST-PROCESSING FOR FAIRNESS WITH
FIXED RANDOMISATION

In general, we expect that the higher the score 𝑟 output by a scoring

function 𝑔 used for a predictive task, the “better” the outcome. This

property is known as positive orientation, with negative orientation
describing the opposite behaviour [19]. For example, if x1 and x2 are
randomly drawn instances from 𝑋 used to calculate credit scores,

and x1 has a higher credit score than x2 – i.e., 𝑔(x1) > 𝑔(x2) – this

relation implies that x1 is more likely to have healthier spending

habits, thus making this person more likely to repay a loan (see

Figure 8 in Appendix E). This does not need to be strictly true for

all values, but should hold in general. In other words, we expect the

receiver operating characteristic (ROC) curve – which expresses the

(false positive, true positive) rates at different thresholds on 𝑅 – to at

least be above the diagonal line from (0, 0) to (1, 1) and monotonic,

i.e., never decreasing [18]. An ROC curve that is a straight line

from (0, 0) to (1, 1) denotes a scoring function that is completely

independent of 𝑌 , i.e., a trivial scoring function.

Optimising a scoring function 𝑔 with respect to complex defini-

tions of fairness (such as equalised odds given by Definition 2.1)

for multiple protected groups is more challenging than optimising

𝑔 for less strict fairness notions (e.g., demographic parity) due to

the need to satisfy multiple constraints simultaneously. With post-

processing, we assume that 𝑔 is fixed and inaccessible, i.e., a black

box. We cannot therefore know or alter how scores are calculated

from the input space, nor do we have access to the input space. This

may be due to trade secrets or privacy concerns [24], and applies

to credit scoring [23] among other domains. To achieve the desired

notion(s) of fairness we therefore need to build an unbiased decision

function 𝑓ℎ upon 𝑔 by finding optimal thresholds for ℎ using only
the joint distributions of 𝑅, 𝐴 and 𝑌 .

When cardinality of the protected attribute 𝐴 is 2, optimal

equalised odds can be achieved by fixing a single threshold at any

point where the ROC curves are equal. If there are multiple points

where the curves meet, the optimal solution (lowest false positive

and highest true positive rates) is the intersection closest to (0, 1),
i.e., the perfect model. Figure 2 shows the ROC curves stratified by

a protected attribute𝐴 (race) for a loan repayment prediction based

on credit scores 𝑅 from the CreditRisk data set.

The challenge arises when the ROC curves do not touch or if

|𝐴| > 2. If the curves do not touch in (0, 1) × (0, 1), we can only

satisfy equalised odds with a single threshold at the trivial points

(0, 0) or (1, 1), i.e., assign the same outcome to all the scores. For

|𝐴| > 2 – e.g., where 𝐴 = 𝐴1 × 𝐴2 × · · · × 𝐴𝑛 may be a Cartesian

product of 𝑛 protected characteristics – it is highly unlikely for

all the ROC curves to intersect at the same point (except for the

trivial points). When using a single threshold, each group can only

access false and true positive values that are on their respective
ROC curve (shown in Figure 2 as the coloured curved lines). Using

multiple thresholds and randomisation, however, allows each group

to access all the points that are below their respective ROC curve
and above the trivial scoring function (shown in Figure 2 as the

coloured regions). The optimal point for equalised odds therefore

becomes the point under all ROC curves that is closest to (0, 1).
Hardt et al. [22] achieve equalised odds by setting group-specific

thresholds 𝑡𝑦,𝑎 – where 𝑡0,𝑎 ≤ 𝑡1,𝑎 , so 𝑦 ∈ {0, 1} – that are applied

to the scoring function 𝑔. If a score falls between the thresholds

designated for the protected group 𝑎, it is assigned a class at random

with a probability given by the parameter 𝑝𝑎 ∈ I. Since thresh-
olds are group-specific, we define a threshold-based classification

function ℎ𝑎 : R ↦→ Y, where the probability of ℎ𝑎 (𝑟 ) = 1 is given

by

𝜁𝑎 (𝑟 ) = 𝑝𝑎1𝑡0,𝑎 (𝑟 ) + (1 − 𝑝𝑎)1𝑡1,𝑎 (𝑟 ) , (1)

for each protected sub-population 𝑎. In other words, ℎ𝑎 (𝑟 ) ∼
𝐵
(
1, 𝜁𝑎 (𝑟 )

)
. We therefore define the final decision function as

𝑓ℎ𝑎 = ℎ𝑎 ◦ 𝑔, and Equation 1 gives us

P{𝑓ℎ𝑎 (x) = 1|𝐴 = 𝑎,𝑋 = x} =


0 if 𝑔(x) < 𝑡0,𝑎

𝑝𝑎 if 𝑔(x) ∈ [𝑡0,𝑎, 𝑡1,𝑎)
1 if 𝑔(x) ≥ 𝑡1,𝑎

.

We call this fixed randomisation, as 𝑟 ∈ [𝑡0,𝑎, 𝑡1,𝑎) yields probability
𝑝𝑎 of 𝑌 = 1. Setting 𝑝𝑎 = 0, 𝑝𝑎 = 1 or 𝑡0,𝑎 = 𝑡1,𝑎 is synonymous to

using a single threshold. A visual example of fixed randomisation

is provided in Figure 1.

Fixed randomisation is an effective approach to build a classifier

𝑓ℎ𝑎 based on a scoring function 𝑔 that satisfies group fairness such

as equalised odds. This strategy, however, exhibits a number of

undesired properties; most notably:

(i) it does not follow the general behaviour expected of a scor-

ing function since all users who are subject to randomisation



Equalised Odds Is Not Equal Individual Odds FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Figure 2: ROC curves for the CreditRisk data set. The solution space for each (protected) group is given by all the points on
their respective ROC curve when a single threshold is used. If we rely on multiple thresholds and randomisation, however, we
expand the solution space to all the points on and below an ROC curve – represented for each group as the coloured area. A fair
solution, according to equalised odds, is any set of thresholds and probabilities such that each group achieves equal true and
false positives.

receive the same classification odds, no matter their score,

but users whose scores are similar and near the thresholds

are treated differently (ergo the example given in the intro-

duction and shown in Figure 1);

(ii) even if 𝑔 is individually fair with well-defined 𝐿X , the discon-
tinuities introduced by 𝜁𝑎 at 𝑡𝑦,𝑎 prevent 𝑓ℎ𝑎 from complying

with individual fairness; and

(iii) if 𝑝𝑎 ≠ 𝑝𝑎′ then users from group𝑎 cannot access the random

classification odds offered to group 𝑎′ and vice versa.

Section 1 has thoroughly demonstrated the adverse conse-

quences of point (i). While users are made to believe that a higher

score is better, e.g., their credit rating, fixed randomisation only

exhibits this behaviour at the thresholds. Refer back to Figure 1,

which shows that despite there being clear evidence of white users
with a credit score of 50 being more likely to repay their loan than

white candidates whose credit score is 25, both are equally likely

(but not guaranteed) to receive a loan.

Definition 3.1 (Classification Odds Distance). Given a deci-
sion function ℎ𝑎 : R ↦→ Y such that ℎ𝑎 (𝑟 ) ∼ 𝐵

(
1, 𝜁𝑎 (𝑟 )

)
, we define

the corresponding distance metric 𝑑Y : I × I ↦→ I such that

𝑑Y
(
ℎ𝑎 (𝑟1), ℎ𝑎 (𝑟2)

)
= |𝜁𝑎 (𝑟1) − 𝜁𝑎 (𝑟2) | ∀𝑟1, 𝑟2 ∈ R .

Using Equation 1, the distance is the difference in odds of positive
classification between two scores.

Point (ii) concerns the classification behaviour around the thresh-

olds 𝑡𝑦,𝑎 and fixed randomisation parameter 𝑝𝑎 , which create dis-

continuities in odds for the final decision function 𝑓ℎ𝑎 . To demon-

strate this we use Definition 3.1, which specifies a distance metric

on the classification odds. Lipschitz conditions scale across compo-

sitions [17], such that

𝑑Y
(
ℎ𝑎 (𝑔(x1)), ℎ𝑎 (𝑔(x2))

)
≤ 𝐿R𝑑R

(
𝑔(x1), 𝑔(x2)

)
and

𝐿R𝑑R
(
𝑔(x1), 𝑔(x2)

)
≤ 𝐿R𝐿X𝑑X (x1, x2) ∀x1, x2 ∈ X .

Issues arise around the thresholds. Take

𝑟1 = lim

𝑧→𝑡+𝑦,𝑎
𝑧 and 𝑟2 = lim

𝑧→𝑡−𝑦,𝑎
𝑧 ,

so two scores approach a threshold from different sides. In such a

case, from Equation 1, we have that

𝑑Y
(
ℎ𝑎 (𝑟1), ℎ𝑎 (𝑟2)

)
= 𝑝𝑎 or 𝑑Y

(
ℎ𝑎 (𝑟1), ℎ𝑎 (𝑟2)

)
= (1 − 𝑝𝑎) ,

and 𝑑R
(
𝑟1, 𝑟2

)
→ 0. Therefore

𝑑Y
(
ℎ𝑎 (𝑟1), ℎ𝑎 (𝑟2)

)
𝑑R

(
𝑟1, 𝑟2

) → ∞ and

𝑑Y
(
ℎ𝑎 (𝑟1), ℎ𝑎 (𝑟2)

)
𝑑R

(
𝑟1, 𝑟2

) ≤ 𝐿R ,

(2)

and thus 𝐿R must be very large. As 𝑟1 approaches 𝑡𝑦,𝑎 from one side

and 𝑟2 from the other, ℎ𝑎 is clearly not locally Lipschitz continuous

since𝑑R → 0 but𝑑Y → 𝑝𝑎 or (1−𝑝𝑎), one of which is always above
0. In theory, 𝑔 could be crafted such that it cannot map individuals

to values around the thresholds, however this would introduce

discontinuities to 𝑔 and thus invalidate the Lipschitz condition. In

this scenario, assuming 𝑔 satisfies the individual fairness constraint

defined in Equation 1, 𝑓ℎ𝑎 must ultimately violate such an individual

fairness constraint at the thresholds when fixed randomisation is

employed. Fixed randomisation can therefore be seen as a step
function – see Figure 1 – which is not uniformly continuous on

any interval that contains 𝑡𝑦,𝑎 [16]. Small changes can occur for

a variety of reasons, e.g., a lack of instrumentation precision [32]

or noise due to human error [34], and thus we argue that small

changes should never dramatically change an individual’s odds.
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Definition 3.2 (Eqalised Individual Odds). Given a proba-
bilistic classifier 𝑓𝑎 : X𝑎 ↦→ Y, where X𝑎 ⊆ X|𝐴 = 𝑎, defined by the
probability curve 𝜁𝑎 : R ↦→ I𝑎 ⊆ I such that ℎ𝑎 (𝑟 ) ∼ 𝐵(1, 𝜁𝑎 (𝑟 ))
and 𝑓𝑎 = ℎ𝑎 ◦ 𝑔 ◦ · · · , 𝑓𝑎 satisfies individual odds iff

∃𝑟 ′ ∈ R s.t. 𝜁𝑎 (𝑟 ) = 𝜁𝑎′ (𝑟 ′) ∀𝑟 ∈ R ∀𝑎, 𝑎′ ∈ 𝐴 𝑎 ≠ 𝑎′.

Therefore, all sub-populations in 𝐴 must be capable of attaining clas-
sification odds available to all the other groups.

Point (iii) highlights an interesting behaviour that gives rise to a

novel, relatively weak, notion of fairness, which we call individual
odds – see Definition 3.2. To satisfy this fairness criterion 𝜁𝑎 does not
necessarily need to be continuous but every point that it can reach

must also be available to 𝜁𝑎′ , so effectively we require I𝑎 ≡ I𝑎′ .
Violating this constraint implies that there exists a subset of users

from the 𝐴 = 𝑎 sub-population that can never be treated the same

as a portion of individuals from the 𝐴 = 𝑎′ group and vice versa.

Whenever 𝑝𝑎 ≠ 𝑝𝑎′ , the individual odds criterion is clearly not

satisfied for fixed randomisation. This definition of fairness bridges

the, thus far somewhat separate, concepts of individual and group

fairness as it considers the treatment of individual users in view

of their assignment to distinct sub-populations determined by the

protected attribute 𝐴.

4 CONSTRUCTING CURVES FOR
PREFERENTIAL RANDOMISATION

Under these conditions, assuring group and individual fairness is

equivalent to searching for solutions that are continuous and smooth,
with a well-defined limit on 𝐿R𝐿X , which also satisfy Definition 2.1.

We therefore must find a combination of the group thresholds (𝑡0,𝑎
and 𝑡1,𝑎) and a curve between them that satisfies individual as well

as group fairness.

4.1 Defining Solution Behaviour
There are potentially infinite curves that satisfy the aforementioned

conditions. In order to decrease the size of the solution space, we can

impose further restrictions on the expected behaviour of the solu-

tion and parameterisation thereof. Where ℎ𝑎 follows fixed randomi-
sation, we define preferential randomisation as 𝑧𝑎 (𝑟 ) ∼ 𝐵

(
1, 𝜙𝑎 (𝑟 )

)
to distinguish between the two; therefore, 𝑓𝑧𝑎 = 𝑧𝑎 ◦ 𝑔 and

P{𝑓𝑧𝑎 (𝑟 ) = 1|𝐴 = 𝑎, 𝑅 = 𝑟 } = 𝜙𝑎 (𝑟 ) .
We expect preferential randomisation to behave as follows:

Monotonicity Larger values of 𝑟 should entail equal or higher

chances of positive classification as argued by point (i) in

Section 3, i.e.,

𝜙 ′𝑎 (𝑟 ) ≥ 0 ∀𝑟 ∈ R .

Continuity at boundaries The solution should avoid sudden

jumps in probability at the thresholds 𝑡𝑦,𝑎 to satisfy point (ii),

i.e.,

𝜙𝑎 (𝑡𝑦,𝑎) = 𝑦 .

Continuity for interval space The curve that mapsR to the clas-

sification probability must be well-defined at all points in R
in compliance with point (iii). If 𝑟 is any fixed point in R,

lim

𝑟→𝑟+
𝜙𝑎 (𝑟 ) = lim

𝑟→𝑟 −
𝜙𝑎 (𝑟 ) ∀𝑟 ∈ R ,

where 𝑟 → 𝑟+ is 𝑟 approaching 𝑟 from above and 𝑟 → 𝑟− is

𝑟 approaching 𝑟 from below.

Monotonicity between the thresholds guarantees that higher

scores are treated better; continuity within the interval ensures

that the Lipschitz constant does not explode at the thresholds – see

Figure 3 for an example. Because no score can be outside of the

[min(R),max(R)] = [R𝛼 ,R𝜔 ] range, the output of 𝜙𝑎 does not

need to span the entire probability range [0, 1] if the thresholds
are fixed at the extremes, i.e., 𝑡0,𝑎 = R𝛼 =⇒ 𝜙𝑎 (𝑡0,𝑎) ≥ 0 or

𝑡1,𝑎 = R𝜔 =⇒ 𝜙𝑎 (𝑡1,𝑎) ≤ 1. This is especially important when we

can only access the final decisions Y as opposed to the scores R,
i.e., 𝑔 is a crisp classifier 𝑔 : X ↦→ Y, in which case we require the

ability to randomise the crisp predictions. With these constraints

we can satisfy the requirements outlined in Section 3.

4.2 Viable Solutions from Linear Systems
Even with these constraints, the number of curves between each

combination of thresholds that constitute viable solutions is still

infinite. We therefore further constrict the solution space to piece-

wise polynomials parameterised only by 𝑡𝑦,𝑎 and 𝑝𝑎 . We assume

each solution takes the form

𝜓𝑎,𝑦 (𝑟 ) = 𝑣𝑦 + 𝑏𝑦𝑟 + 𝑐𝑦𝑟2 + · · · ,

and so for 𝜏𝑎 = 𝑡0,𝑎 + (1 − 𝑝𝑎) (𝑡1,𝑎 − 𝑡0,𝑎),

𝜙𝑎 (𝑟 ) =


0 if 𝑟 < 𝑡0,𝑎

𝜓𝑎,0 (𝑟 ) if 𝑟 ∈ [𝑡0,𝑎, 𝜏𝑎)
𝜓𝑎,1 (𝑟 ) if 𝑟 ∈ [𝜏𝑎, 𝑡1,𝑎)
1 if 𝑟 ≥ 𝑡1,𝑎

. (3)

We choose this particular point of connection (𝜏𝑎) because it ensures

that all solutions (including 𝜁𝑎) follow∫ 𝑡1,𝑎

𝑡0,𝑎

𝜙𝑎 (𝑟 )𝑑𝑟 =
∫ 𝑡1,𝑎

𝑡0,𝑎

𝜁𝑎 (𝑟 )𝑑𝑟 =⇒
∫
R
𝜙𝑎 (𝑟 )𝑑𝑟 =

∫
R
𝜁𝑎 (𝑟 )𝑑𝑟 .

This property guarantees that curves parameterised by the same

thresholds and probabilities are comparable as they yield the same

average probability between 𝑡0,𝑎 and 𝑡1,𝑎 . The only difference be-

tween such solutions is their smoothness and continuity (see Ap-

pendix B for the proof). Finding families of closed-form solutions is

achieved by using the continuity and monotonic constraints, with

the addition of smoothness constraints as the order of the polyno-

mial increases, and solving a full-rank linear system𝑀x = b (refer

to Appendix C for details). Here, we consider four candidate curves:

linear form

𝜓𝑎,0 (𝑟 ) =
𝑝𝑎 (𝑟 − 1)
1 − 𝑝𝑎

𝜓𝑎,1 (𝑟 ) =
(1 − 𝑝𝑎) (𝑟 − 1)

𝑝𝑎
+ 1 ,

quadratic form

𝜓𝑎,0 (𝑟 ) =
𝑝𝑎𝑟

2

(𝑝𝑎 − 1)2
𝜓𝑎,1 (𝑟 ) =

𝑝2𝑎 + 𝑝𝑎 − 1

𝑝2𝑎
− 2(𝑝𝑎 − 1)

𝑝2𝑎
𝑟

+ (𝑝𝑎 − 1)
𝑝2𝑎

𝑟2
,
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Figure 3: Two-threshold preferential randomisation with smoothness constraints applied to probabilities (y-axis) output
by a loan repayment classifier built upon credit scores (x-axis). It satisfies equalised odds for the protected attribute race
(black and white) by using it to assign approval probabilities. This solution has no discontinuities – satisfying individual odds
(Definition 3.2, see 𝑟 and 𝑟 ′ for an example) and being 𝐿R Lipschitz-continuous (Equation 1) – and offers predictive performance
marginally better than the fixed randomisation method shown in Figure 1.

cubic form

𝜓𝑎,0 (𝑟 ) =
3𝑝𝑎𝑟

2

𝑝2𝑎 − 2𝑝𝑎 + 1

+ 2𝑝𝑎𝑟
3

(𝑝𝑎 − 1)3

𝜓𝑎,1 (𝑟 ) =
𝑝3𝑎 + 3𝑝2𝑎 − 3𝑝𝑎 + 2

𝑝3𝑎
+ 6(𝑝2𝑎 − 2𝑝𝑎 + 1)

𝑝3𝑎
𝑟

+ 3(𝑝2𝑎 − 3𝑝𝑎 + 2)
𝑝3𝑎

𝑟2 + 2(𝑝𝑎 − 1)
𝑝3𝑎

𝑟3 , and

4th order polynomial form

𝜓𝑎,𝑦 (𝑟 ) = (30𝑝𝑎 − 12)𝑟2 + (−60𝑝𝑎 + 28)𝑟3 + (30𝑝𝑎 − 15)𝑟4 . (4)

Their derivations are given in Appendix C. Note that the 4
th

order

polynomial (Equation 4) is not monotonic if 𝑝𝑎 ∉ [ 2
5
, 3
5
].

4.3 Validating Individual Fairness
If 𝑔 is individually fair from the outset, validating that a given solu-

tion satisfies the individual fairness constraint is straight forward.

From Definition 3.1 and Equation 2,

𝑑Y
(
𝑧𝑎 (𝑟1), 𝑧𝑎 (𝑟2)

)
≤ 𝐿R𝑑R

(
𝑟1, 𝑟2

)
=⇒ |𝜙𝑎 (𝑟1) − 𝜙𝑎 (𝑟2) |

|𝑟1 − 𝑟2 |
≤ 𝐿R .

Taking the limit 𝑟1 → 𝑟2, we get the definition of a derivative.

Therefore, we can calculate 𝐿R by considering the maximum deriv-

ative 𝐿R = max

(
|𝜙 ′𝑎 (𝑟 ) |

)
∀𝑟 ∈ [𝑡0,𝑎, 𝑡1,𝑎] (proof in Appendix D).

Due to the definitions of each 𝜙𝑎 , the maximum value of 𝜙 ′𝑎 on R
is always either at the thresholds or at the connection point, with

the exception of the 4
th
order polynomial for which 𝐿R is where

𝜙 ′′𝑎 (𝑟 ) = 0 for 𝑟 ∈ (𝑡0,𝑎, 𝑡1,𝑎), thus 𝐿R is always known. Finding

an optimal solution is therefore a case of identifying values of 𝑡𝑦,𝑎
and 𝑝𝑎 for 𝜙𝑎 that satisfy Definition 2.1 such that 𝐿R𝐿X is well-

defined. While 𝐿R is not guaranteed to be small, it is guaranteed to

be finite. Taking the limit 𝑝𝑎 → 1 or 0, 𝑡0,𝑎 → 𝑡1,𝑎 , or 𝑡1,𝑎 → 𝑡0,𝑎 ,

then 𝐿R → ∞, which is synonymous with using a single threshold,

hence invalidating equalised odds.

5 CASE STUDIES
Here we apply the method of preferential randomisation to two

case studies: credit scoring for loan allocation (CreditRisk) and risk

of recidivism (COMPAS). Source code for all the studies is available

online
1
.

5.1 CreditRisk Case Study
To facilitate a direct comparison, we apply our method to the case

study conducted by Hardt et al. [22]. Credit scores are often used to

determine whether an individual should receive a loan or mortgage,

to calculate interest rates and credit limits, and even to conduct

background check on tenants [21, 29]. The scoring function 𝑔 –

which calculates credit scores on input space X – operates as a

black box (see Section 3), therefore we only observe the scores 𝑅

and cannot access X or 𝑔.

The input space may contain attributes influenced by cultural

background (i.e., related to race), possibly causing the joint distribu-

tion of 𝑅 and 𝑌 to differ between sub-populations𝐴. The CreditRisk

data set captures the credit score’s ability to predict defaulting on

a loan (i.e., failing to repay it) for 90 days or more. The data show

that as credit score increases, the likelihood of defaulting decreases

(shown in Figure 8 given in Appendix E) . The rate of these changes,

however, is correlated with race. Therefore, when a single threshold

for each sub-population is optimised for maximum accuracy, the

equalised odds (Definition 2.1) becomes 0.28; we should strive for

this fairness metric to be as close to 0 as possible.

We overcome this by using different thresholds and probabil-

ities (specified in Table 3 given in Appendix F) achieved with a

set of curves with differing smoothness constraints. These curves

honour the “higher credit score leads to higher repayment proba-

bility” dependency encoded in the underlying data. Referring back

to the example introduced in Section 1, we can see from Figures 3

and 4 that the white user with a credit score of 49.5 is now 2.6–

5.25 times more likely to receive a loan than the white user with
a credit score of 25, depending on which continuous solution is

chosen. The results – reported in Table 1 – show that the differ-

ence in accuracy and equalised odds between fixed randomisation

and preferential randomisation is negligible (a change of +0.016
and −0.000634 respectively). The method additionally improves

individual fairness by the Lipschitz constant on 𝜙𝑎 and through sat-

isfying Definition 3.2 (individual odds). Preferential randomisation

1
https://github.com/teddyzander/McGIF

https://github.com/teddyzander/McGIF
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white black Asian

acc (%) EO 𝐿R acc (%) EO 𝐿R acc (%) EO 𝐿R

fixed 82.424 0.875 ∞ 81.483 0.382 ∞ 82.540 0.175 ∞
linear 82.435 0.337 0.044 81.480 0.745 0.222 82.544 0.577 0.148

quadratic 82.440 1.336 0.046 81.486 0.558 0.416 82.543 0.347 0.115

cubic 82.430 0.241 0.091 81.487 0.103 0.338 82.542 0.324 0.265

4
th
order 82.432 0.428 0.027 81.482 0.569 0.092 82.545 0.554 0.064

Table 1: Accuracy (acc) as a percentage, equalised odds (EO) to the order of ×10−4, and Lipschitz constant (𝐿R ) per method for
each value of the protected attribute race in the CreditRisk loan repayment prediction task. The Hispanic group is not shown
as it uses a single threshold (𝑡𝑦,𝑎 = 30) due to having the lowest ROC curve at the optimum, thus acting as the baseline for other
races.
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Figure 4: Probability curves corresponding to the results reported in Table 1. All solutions have comparable accuracy and satisfy
equalised odds but yield a different Lipschitz constant 𝐿R . The Hispanic group is omitted as it uses a single threshold 𝑡𝑦,𝑎 = 30

(refer to Table 3 given in Appendix F).

can therefore be used to guarantee group and individual fairness

through the notions of equalised odds and individual odds, and this

encourages users to engage with the scoring model.

5.2 COMPAS Case Study
The COMPAS (Correctional Offender Management Profiling for

Alternative Sanctions) software
2
is a commercial tool used across

multiple U.S. states to analyse and predict a defendant’s behaviour

if released on bail. The software output can be considered by judges

during sentencing, albeit such a practice must be disclosed. Specifi-

cally, COMPAS offers three insights: (1) likelihood of general recidi-

vism (re-offending); (2) likelihood of violent recidivism (committing

a violent crime); and (3) likelihood of failing to appear in court (pre-

trial flight risk). Here, we focus on the risk of re-offending using

2
Refer to the COMPAS guide – https://www.equivant.com/practitioners-guide-to-

compas-core – and documentation – https://doc.wi.gov/Pages/AboutDOC/COMPAS.

aspx.

the raw COMPAS scores available in the ProPublica data set
3
[2].

The COMPAS algorithm uses characteristics such as criminal his-

tory, known associates, drug involvement and indicators of juvenile

delinquency in order to calculate a score 𝑟 , where a higher score

corresponds to a higher likelihood of recidivism. As is the case

with CreditRisk (Section 5.1), the scoring algorithm used by the

COMPAS software is proprietary. Given its high stakes nature, it is

important to understand the predictive behaviour of this tool since

its social situatedness captured by the (protected) data features –

which are translated into the score 𝑟 – may yield biased results [35]

as shown in Figure 5.

To this end, we define 𝐴 as the Cartesian product of two

sensitive attributes – sex 𝐴1 = {male, female} and race 𝐴2 =

{Caucasian,African-American} – found in the COMPAS data set,

such that 𝐴 = 𝐴1 × 𝐴2 and so |𝐴| = 4. Additionally, normalised

COMPAS scores for a population of interest are denoted with 𝑅;

3
https://github.com/propublica/compas-analysis

https://www.equivant.com/practitioners-guide-to-compas-core
https://www.equivant.com/practitioners-guide-to-compas-core
https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://github.com/propublica/compas-analysis
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Figure 5: ROC curves for the COMPAS data set. The coloured regions indicate areas accessible to each group. (Refer to Figure 2
for more details.)

the ground truth label for each score in 𝑅 is given by 𝑌 , where 1

corresponds to individuals who committed an offence in a two-year

time window; and 𝑌 captures crisp predictions, with 1 indicating

high risk (of recidivism). Studying the link between the scores and

labels provided by the COMPAS data set – refer to Figure 9 given in

Appendix E – indicates that for most values of 𝑟 across all groups

encoded by 𝐴 if 𝑟1 > 𝑟2, then P{𝑌 = 1|𝑅 = 𝑟1} ≥ P{𝑌 = 1|𝑅 = 𝑟2}.
Therefore, we are in a good position to use the monotonic probabil-

ity functions proposed in this paper to build the final classifier.

Given the aforementioned relationship, it is in the public’s (and

judicial system’s) best interest to always increase the probability of

classifying an individual as high-risk when the score 𝑟 increases.

However, fixed randomisation does not allow for this. For example,

under fixed randomisation a Caucasian male with a COMPAS score

in the [24, 41) range has an 11.6% chance of being classified as

high-risk (see Table 4 in Appendix F); nonetheless, a Caucasian
male at the top of this score range is almost twice as likely to

commit an offence as a Caucasian male with a score at the low

end of this range. Therefore, fixed randomisation is unfair on three

fronts: (1) Caucasian maleswith scores in the lower range of [24, 42)
are treated the same as Caucasian males with scores in the higher

range of this interval; (2) higher risk individuals are not labeled as

such despite their scores indicating so; and (3) individuals whose

outcome is randomised are never offered the same odds as members

of other protected groups (in violation of Definition 3.2). Notably,

these arguments apply to all groups in the protected attribute 𝐴

and not only Caucasian males. Small changes in score having a

large impact on odds can have very real effects on individuals –

see the case of Mr. Rodriguez, whose analysis contained an error

that caused his parole to be incorrectly denied [42] – thus we argue

that small changes should not dramatically change the chances of

classification.

The between-group equalised odds measure when we maximise

accuracy separately for each group is 0.148. Mirroring Section 5.1,

we apply our method to the COMPAS model in order to reduce the

equalised odds disparity without breaking individual fairness. We

therefore seek to calibrate the model with a combination of thresh-

olds and probabilities that parameterise the continuous curves (de-

fined in Section 4.2) using nothing but the joint distributions of

(𝑅,𝐴,𝑌 ). We then compare the continuous solutions to the step

function solution (fixed randomisation) defined in Equation 1. The

results reported in Table 2 and Figure 6 show that continuous curves

can be used to simultaneously satisfy equalised odds, individual

fairness and individual odds. Since low-scoring individuals are less

likely to be classified as high-risk, defendants have an incentive

to engage in behaviour that actively lowers their COMPAS score.

Furthermore, public safety is prioritised more effectively since in-

dividuals with a measurably higher probability of recidivism are

given higher odds of being classified as high-risk.

6 CONCLUSION AND FUTUREWORK
In this work we demonstrated how using fixed randomisation to

guarantee group fairnessmay be detrimental to both the owners and

users of a predictive model. Users with higher scores should bemore

likely to receive a better outcome – a property that may be lost when

enforcing group fairness. Ensuring this behaviour also allows the

owners to preserve predictive performance and transparency of the

automated decision-making process. By using the method proposed

in this paper – which relies on monotonic and continuous curves –

we can guarantee these properties. Our approach rewards building

accurate scoring functions and adheres to the notion of individual

fairness from the perspective of function composition. Importantly,

the burden of accurate classification remains the sole responsibility

of themodel owner since ourmethod forces all individuals to rely on

the equalised oddsmeasure of theworst-performing sub-population.

This allocation of responsibility is desirable as owners can choose

to invest in better predictors, data or scoring functions, whereas

users in under-performing groups lack this agency.
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Caucasian male Caucasian female African-American female

acc (%) EO 𝐿R acc (%) EO 𝐿R acc (%) EO 𝐿R

fixed 67.400 2.412 ∞ 67.595 1.413 ∞ 67.549 1.625 ∞
linear 67.384 0.632 0.181 67.574 1.190 0.073 67.555 0.488 0.109

quadratic 67.386 0.640 0.254 67.594 1.723 0.129 67.548 1.259 0.214

cubic 67.395 0.709 0.254 67.589 0.203 0.513 67.555 2.349 0.427

4
th
order 67.380 1.145 0.075 67.576 2.431 0.080 67.574 1.863 0.072

Table 2: Accuracy (acc) as a percentage, equalised odds (EO) to the order of ×10−4, and Lipschitz constant (𝐿R ) permethod for each
value of the Cartesian product of the protected attributes race and sex in the COMPAS prediction task. The African-American
male group is not shown as it uses a single threshold (𝑡𝑦,𝑎 = 48) due to having the lowest ROC curve at the optimum, thus acting
as the baseline for other groups.
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Figure 6: Probability curves corresponding to the results reported in Table 2. All solutions have comparable accuracy and
satisfy equalised odds but yield a different Lipschitz constant 𝐿R . The African-American male group is omitted as it uses a
single threshold 𝑡𝑦,𝑎 = 48 (refer to Table 4 given in Appendix F).

Notably, our case study shows that there can exist multiple so-

lutions that simultaneously satisfy equalised odds and individual

fairness, which can be linked to model multiplicity [36]. When

equalised odds, individual fairness and accuracy are comparable

between groups, we can choose to discriminate the solutions based

on other criteria. Future work will explore this aspect of our curves;

specifically, we will consider:

(1) the most robust curve for each group [26];

(2) curves such that 𝐿R is closest between groups;

(3) the smoothest curves;

(4) curves that subject the fewest individuals to random out-

comes, e.g.,

min|𝑡1,𝑎 − 𝑡0,𝑎 | ∀𝑎 ∈ 𝐴 ;

and

(5) curves that subject equal number of individuals to random

outcomes between groups, e.g.,

min

∑︁
∀𝑎∈𝐴

(
|𝑡1,𝑎 − 𝑡0,𝑎 | − |𝑡1,𝑎′ − 𝑡0,𝑎′ |

)
where 𝑎 ≠ 𝑎′.
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A EXAMPLE DISTANCE FUNCTIONS
IfM is a metric space and 𝑎, 𝑏, 𝑐 ∈ M, then 𝑑M : M ×M ↦→ R+ and the following hold:

• 𝑑M (𝑎, 𝑎) = 0 – the distance between a point and itself is 0;

• if 𝑎 ≠ 𝑏, 𝑑M (𝑎, 𝑏) > 0 – the distance between two different points is strictly greater than 0;

• 𝑑M (𝑎, 𝑏) = 𝑑M (𝑏, 𝑎) – the distance between two different points 𝑎 and 𝑏 is equal to the distance between 𝑏 and 𝑎; and

• 𝑑M (𝑎, 𝑐) ≤ 𝑑M (𝑎, 𝑏) + 𝑑M (𝑏, 𝑐) – the distance between any two points is equal to or less than the distance given by visiting another

point on a journey between the original two points (triangle inequality).

A.1 Euclidean Distance (Continuous Features)
The 𝐿2-norm is defined as

| |x| |2 =

√√√ 𝑁∑︁
𝑘=1

|𝑥𝑘 |2 ,

and is the foundation of Euclidean distance 𝑑𝐸 : X × X ↦→ R defined as

𝑑𝐸 (x1, x2) = | |x1 − x2 | |2 ,

and so

𝑑𝐸 (x1, x2) =

√√√ 𝑁∑︁
𝑘=1

|𝑥
1,𝑘 − 𝑥

2,𝑘 |2 .

A.2 Hamming Distance (Discrete Features)
The 𝐿1-norm is defined as

| |x| |1 =
𝑁∑︁
𝑘=1

|𝑥𝑘 | , (5)

and is the foundation of Hamming distance 𝑑𝐻 : X ×X ↦→ {0, 1, . . . , 𝑁 − 1, 𝑁 }, which counts the number of features that differ between two

inputs x1 and x2, and is defined as

𝑑𝐻 (x1, x2) = | |x1 ⊕ x2 | |1 ,
where ⊕ is the XOR operation. Therefore, x1 ⊕ x2 is simply a vector of 0’s and 1’s such that

(x1 ⊕ x2)𝑘 =

{
0 if 𝑥

1,𝑘 = 𝑥
2,𝑘

1 if 𝑥
1,𝑘 ≠ 𝑥

2,𝑘

.

For example,

x1 =



3

1

1

1

0

1

4

2


x2 =



3

0

2

0

0

0

4

1


=⇒ x1 ⊕ x2 =



0

1

1

1

0

1

0

1


=⇒ ||x1 ⊕ x2 | |1 = 5 .

A.3 Gower’s Distance (Mixed Continuous and Discrete Features)
Take x1, x2 ∈ R𝑛 that contain both continuous (numerical) variables and discrete (categorical) variables. We then consider each variable for

𝑘 = 1, . . . , 𝑛. If the pair 𝑥
1,𝑘 , 𝑥2,𝑘 is continuous,

𝑠𝑘 = 1 −
|𝑥
1,𝑘 − 𝑥

2,𝑘 |
𝑉𝑛

,

where𝑉𝑛 is the range of the 𝑘th feature. Fundamentally, the second term is the normalised 𝐿1-norm (defined in Equation 5) on the differences

between two vectors. However, if the pair 𝑥
1,𝑘 , 𝑥2,𝑘 is discrete, we use the Iverson operation defined by

𝑠𝑘 = [𝑥
1,𝑘 = 𝑥

2,𝑘 ] =
{
0 if 𝑥

1,𝑘 ≠ 𝑥
2,𝑘

1 if 𝑥
1,𝑘 = 𝑥

2,𝑘

.
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Figure 7: Geometric interpretation of a piece-wise linear solution using thresholds and probabilities. We can see that a step
function yields a rectangular area – blue space that denotes the average probability – and is defined by the probability 𝑝𝑎 and
the threshold interval size 𝑡1,𝑎 − 𝑡0,𝑎 . We expect this value to be equal to the area bounded by the piece-wise linear solution 𝜙 (𝑥)
and the x-axis (yellow space), which can be decomposed into simple geometric shapes and summed up.

As such, a value of 𝑠𝑘 = 1 for both continuous and discrete features implies that 𝑥
1,𝑘 = 𝑥

2,𝑘 , and 𝑠𝑘 = 0 implies that 𝑥
1,𝑘 and 𝑥

2,𝑘 are

maximally different. We put this together to get Gower’s Similarity Coefficient

𝑆𝐺 (x1, x2) =
1

𝑛

𝑛∑︁
𝑘=1

𝑠𝑘 , (6)

which is bounded within [0, 1]. However, this coefficient does not follow the axioms laid out at the beginning of this section as 𝑆𝐺 (𝑎, 𝑎) = 1.

Therefore, using Equation 6 we define Gower’s distance as

𝑑𝐺 (x1, x2) =
√︁
1 − 𝑆𝐺 (x1, x2) ,

which offers the behaviour expected of a distance metric.

B GEOMETRIC MOTIVATION FOR THE AVERAGE PROBABILITY (LINEAR CASE)
We can parameterise each set of potential solutions for each value of𝐴 (i.e., protected sub-population) by only three parameters – 𝑝𝑎 , 𝑡0,𝑎 and

𝑡1,𝑎 – by constraining the area under each curve as equal to 𝑝𝑎 (𝑡1,𝑎 − 𝑡0,𝑎). This forces all potential solutions with the same set of parameters

to have the same average probability between the thresholds.

B.1 𝜏𝑎 Proof (Point of Intersection)
Here, we discuss the details of bounding the piece-wise linear solution such that the two lines join at 𝜏𝑎 ∈ [𝑡0,𝑎, 𝑡1,𝑎]. We present a proof that

this value can be easily found, and is defined only through 𝑞𝑎 = 1 − 𝑝𝑎 , 𝑡0,𝑎 and 𝑡1,𝑎 .

We begin by assuming that the solution is linear in nature and, as outlined in the paper (Section 4.1), it preserves the average probability

of the step function within the interval [𝑡0,𝑎, 𝑡1,𝑎]. As such, we can generate a geometric interpretation of the solution as shown in Figure 7.

From here, we can see that finding 𝜏𝑎 is straight forward. By combining the area of a triangle equation, area of a rectangle equation, and

forming an equality between equations, we get

𝑝𝑎 (𝑡1,𝑎 − 𝑡0,𝑎) =
𝑝𝑎

2

(𝜏𝑎 − 𝑡0,𝑎) +
𝑞𝑎

2

(𝑡1,𝑎 − 𝜏𝑎) + (𝑡1,𝑎 − 𝜏𝑎)𝑝𝑎 ,

which can be interpreted as Rectangle = Triangle 1 + Triangle 2 + Small Rectangle. We can then rearrange the notation as follows:

𝑝𝑎

2

(2𝑇1,𝑎 − 2𝑇0,𝑎 − 𝜏𝑎 + 𝑡0,𝑎 − 2𝑇1,𝑎 + 2𝜏𝑎) =
𝑞𝑎

2

(𝑡1,𝑎 − 𝜏𝑎)
𝑝𝑎

2

(𝜏𝑎 − 𝑡0,𝑎) =
𝑞𝑎

2

(𝑡1,𝑎 − 𝜏𝑎)

𝑝𝑎 (𝜏𝑎 − 𝑡0,𝑎) = 𝑞𝑎 (𝑡1,𝑎 − 𝜏𝑎) .
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Since we know that 𝑝𝑎 = 1 − 𝑞𝑎 ,

(1 − 𝑞𝑎) (𝜏𝑎 − 𝑡0,𝑎) = 𝑞𝑎 (𝑡1,𝑎 − 𝜏𝑎)
𝜏𝑎 − 𝑡0,𝑎 − 𝑞𝑎 (𝜏𝑎 − 𝑡0,𝑎) = 𝑞𝑎 (𝑡1,𝑎 − 𝜏𝑎)

𝜏𝑎 − 𝑡0,𝑎 = 𝑞𝑎 (𝜏𝑎 − 𝜏𝑎 + 𝑡1,𝑎 − 𝑡0,𝑎)
𝜏𝑎 = 𝑡0,𝑎 + 𝑞𝑎 (𝑡1,𝑎 − 𝑡0,𝑎) .

We therefore define Δ𝑇𝑎 = 𝑡1,𝑎 − 𝑡0,𝑎 to get the final result from Section 4.2:

𝜏𝑎 = 𝑡0,𝑎 + 𝑞𝑎Δ𝑇𝑎 . (7)

□

B.2 𝜓1(𝑥) and𝜓0(𝑥) Proof (Piece-wise Linear Solution)
We define the linear form of the interpolant as

𝜙𝑎 (𝑥) =


0 𝑥 < 𝑡0,𝑎

𝜓1 (𝑥) 𝑡0,𝑎 ≤ 𝑥 < 𝜏𝑎

𝜓0 (𝑥) 𝜏𝑎 ≤ 𝑥 < 𝑡1,𝑎

1 𝑥 ≥ 𝑡1,𝑎

, (8)

where each𝜓𝑛 is linear, so

𝜓1 (𝑥) = 𝑣𝑥 + 𝑏 𝜓0 (𝑥) = 𝑐𝑥 + 𝑑 .

In order to derive the final form, we must assume the following conditions (continuity):

(1) 𝜓1 (𝑡0,𝑎) = 0,

(2) 𝜓0 (𝑡1,𝑎) = 1, and

(3) 𝜓1 (𝜏𝑎) = 𝜓0 (𝜏𝑎) = 𝑝𝑎 .

From conditions 1 and 3 we get

𝑣𝑇0,𝑎 + 𝑏 = 0 𝑣𝜏𝑎 + 𝑏 = 𝑝𝑎 .

From the difference of these equations we get

𝑎(𝜏𝑎 − 𝑡0,𝑎) = 𝑝𝑎 .

From the proof in Appendix B.1, we know that 𝜏𝑎 = 𝑡0,𝑎 + 𝑞𝑎Δ𝑇𝑎 (Equation 7), giving

𝑣 (𝑡0,𝑎 + 𝑞𝑎Δ𝑇𝑎 − 𝑡0,𝑎) = 𝑝𝑎

𝑣𝑞𝑎Δ𝑇𝑎 = 𝑝𝑎

𝑣 =
𝑝𝑎

Δ𝑇𝑎𝑞𝑎
.

Similarly, from conditions 2 and 3 we get

𝑐𝑡1,𝑎 + 𝑑 = 1 𝑐𝜏𝑎 + 𝑑 = 𝑝𝑎 .

The difference yields

𝑐 (𝑡1,𝑎 − 𝜏𝑎) = 1 − 𝑝𝑎 .

From the definition of 𝜏𝑎 and 𝑝𝑎 we get

𝑐 (𝑡1,𝑎 − 𝑡0,𝑎 − Δ𝑇𝑎𝑞𝑎) = 𝑞𝑎

𝑐Δ𝑇𝑎 (1 − 𝑞𝑎) = 𝑞𝑎

𝑐Δ𝑇𝑎𝑝𝑎 = 𝑞𝑎

𝑐 =
𝑞𝑎

𝑝𝑎Δ𝑇𝑎
.

Substituting these values back into the equations yields the final parameters

−𝑏 =
𝑝𝑎

Δ𝑇𝑎𝑞𝑎
𝑡0,𝑎 −𝑑 =

𝑞𝑎

𝑝𝑎Δ𝑇𝑎
𝑡1,𝑎 − 1

𝑏 = −
𝑝𝑎𝑇0,𝑎

Δ𝑇𝑎𝑞𝑎
𝑑 = 1 −

𝑞𝑎𝑇1,𝑎

𝑝𝑎Δ𝑇𝑎
.
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Putting it all back into the piece-wise equation and factorising then gives

𝜙𝑎 (𝑥) =


0 𝑥 < 𝑡0,𝑎
𝑝𝑎

Δ𝑇𝑎𝑞𝑎
(𝑥 − 𝑡0,𝑎) 𝑡0,𝑎 ≤ 𝑥 < 𝜏𝑎

𝑞𝑎
Δ𝑇𝑎𝑝𝑎

(𝑥 − 𝑡1,𝑎) + 1 𝜏𝑎 ≤ 𝑥 < 𝑡1,𝑎

1 𝑥 ≥ 𝑡1,𝑎

. (9)

□

B.3 Preservation of Average Probability Proof
We previously stated that solutions with the same set of parameters should always have the same average probability. For example, the

linear solution 𝜙𝑎 preserves group fairness introduced by the step function by maintaining the same predictive behaviour (on average) in the

[𝑡0,𝑎, 𝑡1,𝑎] interval. This follows directly from how we defined (1) the linear solution and (2) the point of intersection. Nonetheless, we can

also prove this property directly. If 𝜁𝑎 is the step function for 𝐴 = 𝑎, we follow by stating that we require∫ ∞

−∞
𝜁𝑎 (𝑥)𝑑𝑥 =

∫ ∞

−∞
𝜙𝑎 (𝑥)𝑑𝑥 .

The first thing to observe is that

𝜁𝑎 (𝑥) = 𝜙𝑎 (𝑥) if 𝑥 < 𝑡0,𝑎

𝜁𝑎 (𝑥) = 𝜙𝑎 (𝑥) if 𝑥 ≥ 𝑡1,𝑎

from Equations 1 and 3, and so ∫ 𝑡0,𝑎

−∞
𝜁𝑎 (𝑥)𝑑𝑥 =

∫ 𝑡0,𝑎

−∞
𝜙𝑎 (𝑥)𝑑𝑥∫ ∞

𝑡1,𝑎

𝜁𝑎 (𝑥)𝑑𝑥 =

∫ ∞

𝑡1,𝑎

𝜙𝑎 (𝑥)𝑑𝑥 .

We know that the integral in the interval for the step function is∫ 𝑡1,𝑎

𝑡0,𝑎

𝜁𝑎 (𝑥)𝑑𝑥 =

∫ 𝑡1,𝑎

𝑡0,𝑎

𝑝𝑎𝑑𝑥

= 𝑝𝑎 (𝑡1,𝑎 − 𝑡0,𝑎)
= 𝑝𝑎Δ𝑇𝑎 .

From Equation 8 in Appendix B.2 we know that

𝜓1 (𝑥) =
𝑝𝑎

Δ𝑇𝑎𝑞𝑎
(𝑥 − 𝑡0,𝑎) 𝜓0 (𝑥) =

𝑞𝑎

Δ𝑇𝑎𝑝𝑎
(𝑥 − 𝑡1,𝑎) + 1 . (10)

We can decompose the integral of the piece-wise linear solution into two integrals over the interval, so using Equation 10 we get∫ 𝑡1,𝑎

𝑡0,𝑎

𝜙𝑎 (𝑥)𝑑𝑥 =

∫ 𝜏𝑎

𝑡0,𝑎

𝜓1 (𝑥)𝑑𝑥 +
∫ 𝑡0,𝑎

𝜏𝑎

𝜓0 (𝑥)𝑑𝑥 . (11)

Therefore, from Equation 9 we get ∫ 𝜏𝑎

𝑡0,𝑎

𝜓1 (𝑥)𝑑𝑥 =

∫ 𝜏𝑎

𝑡0,𝑎

𝑝𝑎

Δ𝑇𝑎𝑞𝑎
(𝑥 − 𝑡0,𝑎)𝑑𝑥

=
𝑝𝑎 (𝜏𝑎 − 𝑡0𝑎)2

2Δ𝑇𝑎𝑞𝑎
.

From definition of Δ𝑇𝑎 and 𝜏𝑎 in Appendix B.1 we then get

𝑝𝑎 (𝜏𝑎 − 𝑡0𝑎)2
2Δ𝑇𝑎𝑞𝑎

=
(𝑡1,𝑎 − 𝑡0,𝑎)𝑝𝑎𝑞𝑎

2

. (12)

Also from Equation 9, we have ∫ 𝑡1,𝑎

𝜏𝑎

𝜓0 (𝑥)𝑑𝑥 =

∫ 𝑡0,𝑎

𝜏𝑎

𝑞𝑎

Δ𝑇𝑎𝑝𝑎
(𝑥 − 𝑡1,𝑎) + 1

=
(𝑡1,𝑎 − 𝜏𝑎) (𝑞𝑎𝜏𝑎 − 𝑡1,𝑎𝑞𝑎 + 2Δ𝑇𝑎𝑝𝑎)

2Δ𝑇𝑎𝑝𝑎
,

and again, from definition of Δ𝑇𝑎 and 𝜏𝑎 in Appendix B.1 we get

(𝑡1,𝑎 − 𝜏𝑎) (𝑞𝑎𝜏𝑎 − 𝑡1,𝑎𝑞𝑎 + 2Δ𝑇𝑎𝑝𝑎)
2Δ𝑇𝑎𝑝𝑎

=
(𝑡1,𝑎 − 𝑡0,𝑎)𝑝𝑎 (𝑝𝑎 + 1)

2

. (13)
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Then, from Equations 11, 12 and 13, and recalling that 𝑝𝑎 + 𝑞𝑎 = 1, we get∫ 𝑡1,𝑎

𝑡0,𝑎

𝜙𝑎 (𝑥)𝑑𝑥 =
(𝑡1,𝑎 − 𝑡0,𝑎)𝑝𝑎𝑞𝑎

2

+
(𝑡1,𝑎 − 𝑡0,𝑎)𝑝𝑎 (𝑝𝑎 + 1)

2

=
(𝑡1,𝑎 − 𝑡0,𝑎)

2

(𝑝𝑎 (1 − 𝑝𝑎) + 𝑝𝑎 (1 + 𝑝𝑎))

=
(𝑡1,𝑎 − 𝑡0,𝑎)

2

(𝑝𝑎 − 𝑝2𝑎 + 𝑝𝑎 + 𝑝2𝑎)

=
(𝑡1,𝑎 − 𝑡0,𝑎)

2

2𝑝𝑎

= (𝑡1,𝑎 − 𝑡0,𝑎)𝑝𝑎
= Δ𝑇𝑎𝑝𝑎 ,

and therefore ∫ 𝑡1,𝑎

𝑡0,𝑎

𝜁𝑎 (𝑥)𝑑𝑥 =

∫ 𝑡1,𝑎

𝑡0,𝑎

𝜙𝑎 (𝑥)𝑑𝑥 ,

which means ∫ ∞

−∞
𝜁𝑎 (𝑥)𝑑𝑥 =

∫ ∞

−∞
𝜙𝑎 (𝑥)𝑑𝑥 .

□
Proofs for other curves follow the same logic.

C OBTAINING FULL-RANK LINEAR SYSTEMS TO FIND CLOSED-FORM PIECE-WISE SOLUTIONS OF
DIFFERING SMOOTHNESS

C.1 Linear System
We search for a family of possible solutions for each group 𝜙𝑎 , satisfying equalised odds (Definition 2.1), that adhere to the following

constraints:

continuity
𝜙𝑎 (𝑡0,𝑎) = 0 𝜙𝑎 (𝑡1,𝑎) = 1 ,

monotonicity
𝜙 ′𝑎 (𝑥) ≥ 0 , and

preservation of probability ∫ 𝑡1,𝑎

𝑡0,𝑎

𝜙𝑎 (𝑥)𝑑𝑥 =

∫ 𝑡1,𝑎

𝑡0,𝑎

𝑝𝑎𝑑𝑥 .

By assuming that each 𝜙𝑎,𝑛 = 𝑎𝑛 + 𝑏𝑛𝑥2 + · · · , we can use these constraints (as well as other, more strict constraints) to find solutions to this

problem of varying smoothness by solving the linear system

𝐴x = 𝑏 ,

where x = [𝑎0, 𝑏0, . . . , 𝑎𝑛, 𝑐𝑛, . . .]𝑇 . (Continuous, non-smooth solutions to this linear problem are given in Appendix B.2.)

C.2 Closed-form Smoothness for 𝑝𝑎 ∈ [ 2
5
, 3
5
]

Here, we search for a smooth closed-form solution to the above problem. For simplicity, we assume that 𝑡0,𝑎 = 0 and 𝑡1,𝑎 = 1, however the

solution can be generalised to arbitrary thresholds by applying shift and stretch operations.

We have the following constraints:

(1) 𝜓𝑎 (0) = 0,

(2) 𝜓𝑎 (1) = 1,

(3) 𝜓 ′
𝑎 (0) = 0,

(4) 𝜓 ′
𝑎 (1) = 0, and

(5)

∫
1

0
𝜓𝑎 (𝑥)𝑑𝑥 =

∫
1

0
𝑝𝑎𝑑𝑥 = 𝑝𝑎 .

Having five constraints requires five coefficients, and so we assume that

𝜓𝑎 (𝑥) = 𝑎1 + 𝑏1𝑥 + 𝑐1𝑥2 + 𝑑1𝑥3 + 𝑔1𝑥4 .
We know that

𝜓 ′
𝑎 (𝑥) = 𝑏1 + 2𝑐1𝑥 + 3𝑑1𝑥

2 + 4𝑔1𝑥
3∫

1

0

𝜓𝑎 (𝑥)𝑑𝑥 = 𝑎1 +
1

2

𝑏1 +
1

3

𝑐1 +
1

4

𝑑1 +
1

5

𝑔1 ,
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and so we have the following well-defined, full-rank linear system:
1 0 0 0 0

0 1 0 0 0

1 1 1 1 1

0 1 2 3 4

1
1

2

1

3

1

4

1

5



𝑎1
𝑏1
𝑐1
𝑑1
𝑔1


=


0

1

0

0

𝑝𝑎


.

After solving the system, we get

𝜓𝑎 (𝑥) = (30𝑝𝑎 − 12)𝑥2 + (−60𝑝𝑎 + 28)𝑥3 + (30𝑝𝑎 − 15)𝑥4 .

If the scoring function 𝑓 (x) = 𝑦 and 𝑦 ∈ R, then this gives the final solution

P{𝜙𝑎 (𝑦) = 1} =


0 if 𝑦 < 𝑡0,𝑎

𝜓𝑎 ( 𝑦−𝑡0,𝑎
𝑡1,𝑎−𝑡0,𝑎 ) if 𝑡0,𝑎 ≤ 𝑦 < 𝑡1,𝑎

1 if 𝑦 ≥ 𝑡1,𝑎

.

This function, however, is only monotonic for 𝑝𝑎 ∈ [ 2
5
, 3
5
].

□

C.3 Piece-wise Cubic Interpolant
The closed-form, 4

th
order solution satisfies the smoothness and boundary constraints, but violates the monotonic constraint for any

probability outside of the [ 2
5
, 3
5
] range. We can address this issue by constructing a piece-wise spline based on cubic polynomials given by

𝜓𝑎,𝑛 (𝑥) = 𝑎𝑛 + 𝑏𝑛𝑥 + 𝑐𝑛𝑥2 + 𝑑𝑛𝑥3 .

However, we need to add two additional constraints to the optimisation problem: (1) an agreed meeting point and (2) an agreed derivative at

the meeting point. Again, assuming that 𝑡0,𝑎 = 0 and 𝑡1,𝑎 = 1 – recall that we can shift and re-scale the solution later – we get:

(1) 𝜓𝑎,0 (0) = 0,

(2) 𝜓𝑎,1 (1) = 1,

(3) 𝜓 ′
𝑎,0

(0) = 0,

(4) 𝜓 ′
1,0

(1) = 0,

(5) 𝜓𝑎,0 (1 − 𝑝𝑎) = 𝑝𝑎 ,

(6) 𝜓𝑎,1 (1 − 𝑝𝑎) = 𝑝𝑎 ,

(7) 𝜓 ′
𝑎,0

(1 − 𝑝𝑎) −𝜓 ′
𝑎,1

(1 − 𝑝𝑎) = 0, and

(8)

∫
1−𝑝𝑎
0

𝜓𝑎,0 (𝑥)𝑑𝑥 +
∫
1

1−𝑝𝑎 𝜓𝑎,1 (𝑥)𝑑𝑥 =
∫
1

0
𝑝𝑎𝑑𝑥 = 𝑝𝑎 .

Since

𝜓 ′
𝑎,𝑛 (𝑥) = 𝑏𝑛 + 2𝑐𝑛𝑥 + 3𝑑𝑛𝑥

2

and ∫
1−𝑝𝑎

0

𝜓𝑎,0 (𝑥)𝑑𝑥 =𝑎0 (1 − 𝑝𝑎) + 𝑏0
(1 − 𝑝𝑎)2

2

+ 𝑐0
(1 − 𝑝𝑎)3

3

+ 𝑑0
(1 − 𝑝𝑎)4

4∫
1

1−𝑝𝑎
𝜓𝑎,1 (𝑥)𝑑𝑥 =𝑎1 (1 − (1 − 𝑝𝑎)) + 𝑏0

1 − (1 − 𝑝𝑎)2
2

+

𝑐0
1 − (1 − 𝑝𝑎)3

3

+ 𝑑0
1 − (1 − 𝑝𝑎)4

4

,

we get the following linear system:

𝐴 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 1 − 𝑝𝑎 (1 − 𝑝𝑎 )2 (1 − 𝑝𝑎 )3 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 1 2 3

0 0 0 0 1 1 − 𝑝𝑎 (1 − 𝑝𝑎 )2 (1 − 𝑝𝑎 )3
0 1 2(1 − 𝑝𝑎 ) 3(1 − 𝑝𝑎 )2 0 −1 −2(1 − 𝑝𝑎 ) −3(1 − 𝑝𝑎 )

1 − 𝑝𝑎
(1−𝑝𝑎 )2

2

(1−𝑝𝑎 )3
3

(1−𝑝𝑎 )4
4

1 − (1 − 𝑝𝑎 ) 1−(1−𝑝𝑎 )2
2

1−(1−𝑝𝑎 )3
3

1−(1−𝑝𝑎 )4
4
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x =



𝑎0
𝑏0
𝑐0
𝑑0
𝑎1
𝑏1
𝑐1
𝑑1


𝑏 =



0

0

𝑝𝑎
1

0

𝑝𝑎
0

𝑝𝑎


.

Solving 𝐴x = 𝑏 yields

𝑎0 = 0 𝑏0 = 0, 𝑐0 =
3𝑝

𝑝2

𝑎 − 2𝑝𝑎 + 𝑝𝑎
𝑑0 =

2𝑝𝑎

(𝑝𝑎 − 1)3

𝑎1 =
𝑝3

𝑎 + 3𝑝2 − 3𝑝 + 2

𝑝3

𝑎

𝑏1 =
6(𝑝2

𝑎 − 2𝑝 + 1)
𝑝3

𝑎

𝑐1 =
3(𝑝2

𝑎 − 3𝑝 + 2)
𝑝3

𝑎

𝑑1 =
2(𝑝𝑎 − 1)

𝑝3

𝑎

.

We then take the solution to be

P{𝜙𝑎 (𝑦) = 1} =


0 if 𝑦 < 𝑡0,𝑎

𝜓𝑎,0 ( 𝑦−𝑡0,𝑎
𝑡1,𝑎−𝑡0,𝑎 ) if 𝑡0,𝑎 ≤ 𝑦 < 𝜏𝑎

𝜓𝑎,1 ( 𝑦−𝑡0,𝑎
𝑡1,𝑎−𝑡0,𝑎 ) if 𝜏𝑎 ≤ 𝑦 < 𝑡1,𝑎

1 if 𝑦 ≥ 𝑡1,𝑎

.

□

D MAXIMUM 𝐿R FOR DIFFERENT CURVES
As discussed in Section 4.2, we know that

𝐿R = max|𝜙 ′𝑎 (𝑟 ) | .
Since these curves are specified through closed-form solutions parameterised by 𝑡𝑎,𝑦 and 𝑝𝑎 on a known interval R, 𝐿R can be found

analytically for each curve. Here, we show the derivation procedure for the linear and 4
th

order solutions. The other curves (cubic and

quadratic) follow the same protocol.

The linear solution is defined in Equation 9. As such, we know that

𝜙 ′𝑎 (𝑟 ) =


0 𝑟 ≥ 𝑡1,𝑎

𝑝𝑎
Δ𝑇𝑎 (1−𝑝𝑎 ) 𝜏𝑎 ≤ 𝑟 < 𝑡1,𝑎
1−𝑝𝑎
Δ𝑇𝑎𝑝𝑎

𝑡0,𝑎 ≤ 𝑟 < 𝜏𝑎

0 𝑟 < 𝑡0,𝑎

.

Thus, the value of 𝐿R is related to the value of 𝑝𝑎 and the distance between the thresholds with

max|𝜙 ′𝑎 (𝑟 ) | =


1

Δ𝑇𝑎
if 𝑝𝑎 = 1

2

𝑝𝑎
Δ𝑇𝑎 (1−𝑝𝑎 ) if 𝑝𝑎 > 1

2

1−𝑝𝑎
Δ𝑇𝑎𝑝𝑎

if 𝑝𝑎 < 1

2

.

The 4
th
order is define in Equation 4, and takes the form

𝜙𝑎 (𝑟 ) =


1 𝑟 ≥ 𝑡1,𝑎

𝜓𝑎 ( 𝑟−𝑡0,𝑎
𝑡1,𝑎−𝑡0,𝑎 ) 𝑡0,𝑎 ≤ 𝑟 < 𝑡1,𝑎

0 𝑟 < 𝑡0,𝑎

,

where

𝜓𝑎 (𝑥) = (30𝑝𝑎 − 12)𝑥2 + (−60𝑝𝑎 + 28)𝑥3 + (30𝑝𝑎 − 15)𝑥4 . (14)

Since the definition of 𝜙𝑎 (𝑟 ) is always constrained such that it is monotonic and 𝜙𝑎 (𝑡𝑦,𝑎) = 𝑦, the maximum derivative always occurs at the

point of inflexion, or

𝜓 ′′
𝑎 (

𝑟 − 𝑡0,𝑎

𝑡1,𝑎 − 𝑡0,𝑎
) = 0 .

From Equation 14:

𝜓 ′′
𝑎 (𝑥) = 12(30𝑝𝑎 − 15)𝑥2 + 6(−60𝑝𝑎 + 28)𝑥 + 2(30𝑝𝑎 − 12) ,
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and so from the quadratic formula for𝜓 ′′
𝑎 (𝑥) = 0 we get

𝑥★ =
−(6(−60𝑝𝑎 + 28)) −

√︁
(6(−60𝑝𝑎 + 28))2 − 4(12(30𝑝𝑎 − 15)) (2(30𝑝𝑎 − 12))

2(12(30𝑝𝑎 − 15))

= −
7 − 15𝑝𝑎 +

√︃
75𝑝2𝑎 − 75𝑝𝑎 + 19

30𝑝𝑎 − 15

,

where we ignore the second root, as it takes 𝑥★ out of range. We can use this to find max|𝜙 ′𝑎 (𝑥) | = 𝜙 ′𝑎 (𝑥★), which assumes 𝑡0,𝑎 and 𝑡1,𝑎 are

fixed at 0 and 1 respectively, and apply a re-scaling such that

max|𝜙 ′𝑎 (𝑟 ) | =
|𝜙 ′𝑎 (𝑥★) |
𝑡1,𝑎 − 𝑡0,𝑎

.

This method works for all valid values of 𝑝𝑎 , except when 𝑝𝑎 = 1

2
where𝜓𝑎 (𝑥) is reduced to a cubic equation, and thus the point of inflexion

is perfectly between the two thresholds:

max|𝜙 ′𝑎 (𝑟 ) | = 𝜙 ′𝑎
(
𝑡0,𝑎 + 1

2

(𝑡1,𝑎 − 𝑡0,𝑎)
)
,

in which case

LR = max|𝜙 ′𝑎 (𝑟 ) | .
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E PROBABILITY FUNCTIONS
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Figure 8: Probability function for the CreditRisk data set. An increase in credit score 𝑟 (x-axis) generally leads to an increase in
the probability of an individual not defaulting on a loan (y-axis) in the last 90 days (𝑌 = 1).
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Figure 9: Probability function for the COMPAS data set. An increase in score 𝑟 (x-axis) generally leads to an increase in the
probability of committing an offence (y-axis) in a two-year time window (𝑌 = 1).

F OPTIMAL THRESHOLDS FOR FAIRNESS

white black Hispanic Asian

𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎 𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎 𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎 𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎

fixed 25.0 50.0 0.500 23.5 85.0 0.972 30.0 30.0 0.000 35.5 49.0 0.728

linear 9.5 52.0 0.348 20.5 42.5 0.830 30.0 30.0 0.000 33.5 61.5 0.806

quadratic 11.0 78.5 0.610 20.0 82.0 0.928 30.0 30.0 0.000 24.0 49.5 0.406

cubic 1.5 49.5 0.256 20.5 44.5 0.844 30.0 30.0 0.000 34.0 70.0 0.864

4
th
order 7.5 63.5 0.468 14.0 32.0 0.426 30.0 30.0 0.000 28.0 52.5 0.546

Table 3: Thresholds and probabilities for each curve across all classes of the CreditRisk data set. See Figure 4 for visualisation.

Caucasian male Caucasian female African-American male African-American female

𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎 𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎 𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎 𝑡0,𝑎 𝑡1,𝑎 𝑝𝑎

fixed 24.0 41.0 0.116 7.0 37.0 0.048 48.0 48.0 0.000 35.0 58.0 0.930

linear 20.0 43.0 0.194 27.0 42.0 0.478 48.0 48.0 0.000 23.0 42.0 0.326

quadratic 18.0 46.0 0.266 26.0 47.0 0.576 48.0 48.0 0.000 12.0 43.0 0.232

cubic 34.0 54.0 0.772 33.0 91.0 0.952 30.0 30.0 0.000 33.0 77.0 0.926

4
th
order 25.0 48.0 0.412 26.0 46.0 0.557 48.0 48.0 0.000 26.0 48.0 0.550

Table 4: Thresholds and probabilities for each curve across all classes of the COMPAS data set. See Figure 6 for visualisation.
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