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ABSTRACT

Decision processes of computer vision models—especially deep neu-
ral networks—are opaque in nature, meaning that these decisions
cannot be understood by humans. Thus, over the last years, many
methods to provide human-understandable explanations have been
proposed. For image classification, the most common group are
saliency methods, which provide (super-)pixelwise feature attri-
bution scores for input images. But their evaluation still poses a
problem, as their results cannot be simply compared to the un-
known ground truth. To overcome this, a slew of different proxy
metrics have been defined, which are—as the explainability methods
themselves—often built on intuition and thus, are possibly unre-
liable. In this paper, new evaluation metrics for saliency methods
are developed and common saliency methods are benchmarked on
ImageNet. In addition, a scheme for reliability evaluation of such
metrics is proposed that is based on concepts from psychometric
testing.
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1 INTRODUCTION

In recent years, eXplainable Artificial Intelligence (XAI) has gained
significant attention as a means to address the black-box nature of
many Machine Learning (ML) models. XAI methods aim to provide
transparency and interpretability, allowing users to understand
the decision-making process of ML models. While various XAI
techniques have been developed, their evaluation remains challeng-
ing, particularly in computer vision tasks. A common approach
of explaining image classification and object detection decisions
are so-called saliency maps that highlight image regions deemed
particularly important for the prediction. The evaluation of such
methods for image classification is essential to assess their effec-
tiveness and compare different approaches. However, this is still an
open problem despite various approaches to assess the properties
of the saliency method, mainly due to the subjective nature of eval-
uations [28], the fallibility of user studies [13], and the different
concepts used to evaluate such metrics [39]. It is particularly diffi-
cult to compare and assess saliency explanations beyond anecdotal
evidence, as by definition they only provide local explanations, i.e.,
explanations for individual data points. A remedy for this can be
ways to evaluate local explanations over entire datasets as in [6],
resulting in a global assessment of explanation properties.

For XAI methods in general, the lack of ground-truth explana-
tions complicates their robust assessment, sometimes attempted to
be solved via creating specific datasets with ground-truth explana-
tions [4, 7]. Additional to using such datasets, concepts from other
disciplines with similar problems—lack of ground truth and tests
with possibly differing underlying concepts—such as psychometric
testing can be used [36].

The aim of this work is to further develop the ideas of Arias-
Duart et al. [5, 6], which provide a set of metrics for saliency meth-
ods. This set is extended to a comprehensive list of metrics that
mimic common metrics for classification evaluation based on the
definition of correct and incorrect feature importance (FI) in images.
Additionally, it is shown how the reliability (as part of validity) of
the proposed metrics can be assessed, based on [36]. As such, our
contributions are:
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o We extend the list of saliency metrics. While [5] introduces
some of them, others are overlooked. The additional metrics
in particular provide interesting additional information, as
shown in Section 5.

o We show how such metrics can be assessed regarding reli-
ability (as a precursor to validity) in order to test them for
their practical use.

o With the full set of saliency metrics and by adding B-cos
networks [10] and the popular SHAP [21], we provide a more
complete benchmark of XAI methods.

e We provide an in-depth discussion of the saliency metrics
and show which properties of XAI methods (as given by
Nauta et al. [24]) they address.

In the following chapter, the Focus score of Arias-Duart et al. [6]
is briefly introduced, the saliency methods used in this paper and
further works related to XAlI-evaluation are discussed, with the
proposed methodology being presented in Section 3, including
the definition of (in)correct FI and the psychometric evaluation
approach used here. The experiment setup and specifically created
datasets are described in Section 4, followed by a selection of the
results for the proposed metrics in Section 5, accompanied by a
discussion of the limitations of the approach in Section 6. The paper
is closed with a summary in Section 7.

2 RELATED WORK

This work builds on the idea of Arias-Duart et al. [6], where a
metric for evaluating XAI methods is proposed. Since there is no
ground truth for individual image pixels as to which class they
can be assigned to, the authors have proposed a different way of
evaluating explanations of saliency methods: they create mosaics
from four images of various classes and assume that the evidence
towards a class is more prevalent in images labelled with that
class. The explanations, which are provided as FI by the examined
XAI methods, are then evaluated by comparing positive feature
attribution on images belonging to the correct class with positive
feature attribution on the entire mosaic. Positive feature attribution
here refers to the summed up feature attribution values of each
pixel in the respective part of the mosaic.

In Section 2.1 the saliency methods considered in the original
paper [6] as well as some additional methods examined in this paper
are briefly presented. Section 2.2 addresses the state of the art with
regard to XAI evaluation.

2.1 Saliency Methods

The saliency methods for which the Focus score was determined
and analyzed in [6] will be described shortly in the following. Lin-
ear Interpretable Model-Agnostic Explanations (LIME) was one
of the first methods to provide model-agnostic explanations in
the form of feature attribution. The feature attribution is calcu-
lated by sampling around a data-point and fitting a simpler linear
model to the weighted samples [27]. For images, LIME can create
class-specific explanations by highlighting image regions—so-called
superpixels—that are deemed especially relevant for the target class.
Layer-wise Relevance Propagation (LRP), on the other hand, uses
first-order Taylor expansions for local renormalization layers to
generate saliency maps [8]. Integrated Gradients (IntGrad), which
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was proposed in [34], calculates the feature importance of an image
by forming the gradient of the model output with respect to the
model input and integrating this gradient over a baseline image
(“neutral” input, e.g., grey image). Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) produces class-specific saliency maps
by computing gradient information in the last convolutional layer
of a neural network [29]. A modification of Grad-CAM, namely
Grad-CAM++, uses a weighted combination of the positive partial
derivatives in the last convolutional layer, improving the perfor-
mance of Grad-CAM for multiple objects of the same class in a
single image and object localization [12]. Lastly, SmoothGrad de-
scribes the exchange of the often noisy gradient-based explanations
by a weighted local average, thus possibly improving the visual
quality and informativeness [31].

In this work, the range of examined saliency methods is ex-
tended to also include SHapley Additive exPlanations (SHAP) and
B-cos. SHAP is not an explanation method itself but a unifying
framework for feature attribution methods, especially Shapley Re-
gression, Shapley Sampling, Quantitative Input Influence Feature
Attributions, LIME, DeepLIFT, and LRP [21]. The game-theoretic
interpretation of these methods, which are used to approximate
Shapley Values (given certain hyperparameter choices), provides
the possibility of receiving feature attributions with three desired
criteria: Local accuracy, missingness, and consistency. KernelSHAP
was chosen to approximate Shapley Values here, due to its com-
paratively low runtime. In contrast to all the post-hoc explanation
methods described before, B-cos networks [10] generate model-
inherent saliency maps by changing the activation functions of
neural networks. This forces the network weights to align with the
network-input and requires the networks to be trained with the
B-cos transform as activation functions.

2.2 XAI Evaluation

In recent years, several approaches have been proposed for evalu-
ating XAI methods. An overview of the methods published by the
end of 2020 can be found in [24]. The authors list twelve properties
of XAI methods that can be tested, often with various automated
checks assessing (part of) a specific property. They group these
properties into user-, presentation-, and content-properties, with
six of them belonging to the last class and three to each of the
previous ones. The content-properties are the most likely ones to
be objectively measurable, although the authors of this paper ex-
pect that single metrics will most likely only assess a small subset
of the available properties at once, as most of them are quite dis-
joint in their interpretation, e.g., covariate complexity—denoting
how complex the (interactions of) features in the explanation are—
and consistency—denoting how deterministic and implementation-
invariant an explanation is—probably require quite different as-
sessment methods. The metrics in this paper are therefore limited
to assessing two of these properties: The contrastivity of saliency
explanations, denoting how strongly an explanation discriminates
between different outcomes of the ML model. An explanation that
does not discriminate well would probably highlight general in-
formation such as edges in the mosaic images, thus resulting in
bad saliency metrics. Additionally, with the assumption fulfilled
that the used models are able to distinguish between the relevant
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classes and evidence can mainly be found within images of the
corresponding class, the correctness of saliency methods can be
assessed (as described in the beginning of this chapter).

The explanation type and thus, the evaluation usually depends
on the type of input data for which predictions or models need
to be explained. Because of this, available toolboxes are limited to
certain data types while still providing multiple evaluation met-
rics, e.g., [3] for tabular explanations and [17] for image explana-
tions. Doshi-Velez and Kim [15] proposed three different stages of
XAl evaluation, each with increasing effort and cost: functionally-
grounded, human-grounded, and application-grounded. As part
of the functionally-grounded evaluation and thus, early on in the
development and implementation of XAI methods, metrics such as
the one presented here can be used.

User studies are often viewed as the gold-standard of XAl eval-
uation, although their results have to be taken with caution as
users tend to overestimate their understanding of the ML model
[13, 37], which distorts the study results. In addition to user studies
and metrics that can be evaluated on a specific use-case, more gen-
eral documentation approaches have been suggested, for instance
Explanation Fact Sheets [32], which contain information on rele-
vant aspects of XAI methods. A similar approach, although more
anecdotal and use-case specific, can be found in [9], which aims
at providing a standardized format to assess and discuss trade-offs
when evaluating saliency methods.

In the absence of established ways to compare XAI methods on
a non-task-specific basis, so-called sanity checks can be used. These
can test saliency methods for image classification for desiderata
such as model-invariance and input-invariance [2, 19]. Even though
a successful check does not provide enough information to fully
trust a model, an unsuccessful one does show problematic behavior.
Such sanity checks can also be formulated for object detection
models [25], although the idea of general sanity checks and the
ones which are not task-specific can be criticized due to possibly
introducing a selection bias [40]. Other sanity checks involve the
creation of “ground-truth” saliency maps that are compared with
the generated explanations [18].

Rao et al. [26] propose a metric similar to Focus [6], which also
only uses positive feature attributions, but limit all classes to ap-
pear in the mosaic at most once. The authors guarantee the basic
assumption of class-specific features occurring exclusively in the
target class by constraining the classifier to use the information
from one part of the mosaic only. This is done by building one
separate model head for every image in the mosaic. This ensures
that no visual information between images is exchanged, limiting
the classifier in its decision to rely on single images. The authors
then define their metric based on whether the saliency methods still
highlight other parts of the mosaic. Moreover, they evaluate the
mosaics visually by humans via a systematic assessment approach
that entails clustering them with their previously defined scores.

In [38] a benchmark of common saliency methods and evaluation
metrics is provided. The work concludes that the evaluation results
are inconclusive and the metrics in part contradict each other.

Finally, Tomsett et al. [36] investigate XAI evaluation metrics
and present an approach from psychometric testing to assess them.
Apart from [36], however, there is little research that addresses the
topic of XAl metrics evaluation.
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Table 1: XAI evaluation metrics proposed in this work. All of
them can be calculated with the true positives, true negatives,
false positives, and false negatives defined in Section 3.1.2.

Evaluation Metrics Formula
. tp
P F —
recision (Focus score) 7 t+p T
Sensitivity (Recall) W
e n
Specificity e fp
. n
False-Negative-Rate ifn
. fr
False-Positive-Rate i fp
Accurac __tpin
Y tprinEfprn
F1-Score 2-precision-sensitivity

precision+sensitivity

3 METHODOLOGY

This section extends the Focus score for evaluating XAI methods
from Arias-Duart et al. [6] by incorporating negative FI. First, the
construction of mosaics is explained, followed by the definition
of true positives and negatives, and false positives and negatives
with respect to FI in the mosaics. These are then used to define
additional evaluation metrics. In the second part, an approach from
psychometric testing is introduced to examine the suitability of
these metrics for evaluating XAI methods.

3.1 Proposed Metrics

To calculate the saliency metrics, so-called mosaics are used. They
consist of a 2 x 2 grid of images of different classes from the original
dataset. The idea behind them is that—given a model that is able
to distinguish between the relevant classes—FI for a given class C
should be attributed to the part of the mosaic that belongs to class C
(as denoted by the labels in the original dataset). This then allows to
calculated metrics akin to classical metrics for classification tasks,
as described in the following.

3.1.1  Mosaics. The proposed approach adapts the procedure from
the original Focus paper [6]. The mosaics used to test and evaluate
various saliency methods are constructed of four images: two from
the assigned target class and two from different classes within the
same dataset. All images are selected randomly from their specific
classes. The images are arranged in random positions in the 2 x 2
grid without overlap. To maintain consistency of visual patterns
between mosaics and the training data, the individual images are
scaled to a uniform size of 224 x 224 pixels. Accordingly, the mosaics
have a resolution of 448 x 448 pixels. Because the individual images
of the mosaics are part of the training data, the noise introduced
by them is ensured to fall within the distribution of the training
data. Figure 1 shows an example mosaic for each dataset considered
in this paper. The datasets used for mosaic construction for the
experiments are described in detail in Section 4.

3.1.2  True and False Feature Importance. For a more holistic evalu-
ation of XAI methods, further metrics are defined in addition to the
Focus score—the precision for FI—by considering negative FI. In
general, pixels with a positive feature attribution value contribute
to the prediction of the target class and pixels with a negative
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Figure 1: One sample mosaic for each of the regarded datasets (cf. Section 4). On the left the mosaic comprises the ImageNet
classes “tabby” and “sports car”, in the middle “Bernese Mountain Dog” and “Greater Swiss Mountain Dog”, and on the right
the classes “lorikeet”, “mashed potato”, and “American chameleon”.

feature attribution value contribute to the prediction of the other
classes. Here, both are taken into account for the specification of
true positives and negatives as well as false positives and negatives
related to the FI on the mosaics. However, true and false FI can only
be approximated, because the pixel-wise ground truth is unknown.
This is done as follows:

e true positive (¢p): positive FI on the images of the target class

tp= Z FI(Cimg(x’ y) = Ctarget A FI > 0)
xy

where x, y € {0, 1} are the image coordinates, i.e., (0, 0) is the
image on the bottom left, (0, 1) is bottom right, (1,0) is top
left, and (1, 1) is top right. FI is the feature importance in the
entire mosaic, cimg is the class label at position (x, y), based
on the four images used to create the mosaic and ctarget is
the target class for the FI. The computation of the FI depends
on the saliency method under investigation.

o false positive (fp): positive FI on the images that do not
belong to the target class

fp= Z FI(Cimg (%, ) = —Ctarget A FI > 0)
Xy
o false negative (fn): negative FI on the images of the target
class

fn = Z FI(Cimg(x’ y) = Ctarget ANFI < O)
Yy

e true negative (¢n): negative FI on the images of other classes

tn = Z FI(cimg (%, y) = —ctarget A FI < 0)
Xy

Thus, by also considering negative FI, true and false negatives
can be calculated in addition to true and false positives, so that a
full confusion matrix can be defined. This enables the computation
of metrics commonly applied in classification tasks, specifically for
assessing saliency methods (cf. Table 1). With the additional metrics,
XAI methods can therefore be evaluated more comprehensively.

Please note that not all XAI methods provide negative FI. Ac-
cordingly, the additional metrics can only be calculated for B-cos,
IntGrad, LRP and SHAP. The other XAI methods can only be eval-
uated using the precision metric. An approach to examine the suit-
ability of the metrics for evaluating the XAI methods is explained
in the next section.

3.2 Evaluation Approach

Despite the absence of ground truth for evaluating the explanation
methods and, consequently, the saliency metrics, the evaluation
of certain properties of such metrics can still be conducted. Given
the analogous challenges of lacking ground truth in psychometric
approaches, corresponding evaluation procedures can be adapted
to saliency maps, as proposed in [36]. Two fundamental concepts
are validity, i.e., the extent to which a test or variable measures
what it is intended to measure, and reliability, i.e, the consistency
of results a test produces. While a reliable test does not guarantee
validity, reliability is a necessary condition for validity [22]. In
psychometric testing, the scenario is usually described by raters
(e.g., psychologists) administering tests to a patient, where different
types of reliability can be evaluated to assess whether a metric
produces reliable and thus, possibly valid results. In this paper, two
adapted reliability tests from [36] are considered.

3.2.1 Inter-rater Reliability. For the purpose of selecting a metric
to choose between various saliency methods, this metric ideally
yields the same ranking of saliency methods across all images of a
dataset. When the ranking of saliency methods remains consistent
across all (or most) test images, it is highly likely that the ranking
for new images will be the same as well. This makes it easier to
identify the best performing saliency method for future tasks. This
paradigm can be compared to inter-rater reliability, where the im-
ages can be regarded as different raters administering a battery of
tests to be scored by the saliency methods [36]. Intuitively, each
image (rater) produces a ranking of saliency methods via the re-
spective metric. This ranking can then be checked for agreement
over all images (raters) across a dataset. Krippendorft’s a € [-1, 1]
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is a common statistic used to assess agreement between raters [20].
Itis calculatedasa =1 — B—‘e’ , where D, denotes the disagreement
observed and D, denotes the disagreement by chance. A value of
a = 1 signifies perfect agreement in the ranking of saliency meth-
ods, a close to 0 indicates random rankings, and @ < 0 indicates
systematic disagreement. The implementation used is the one by
Castro [11].

3.2.2 Inter-method Reliability. The saliency precision can also be
used to identify images or classes that are particularly challenging
to classify within a given dataset [6]. In order to utilize an evalua-
tion metric for this objective, difficult classes and images should be
found consistently. This consistency should be independent of the
saliency method employed, as the model used remains the same
across all methods. Such a desideratum can be compared to inter-
method reliability, which can be quantified using Spearman’s p
[36], which measures whether the relation of two variables X, Y
can be described via a monotonic function (i.e., an increase in X
also results in an increase in Y [33]). Spearman’s p can be calcu-
lated as the Pearson correlation p between the ranks of X and Y,

resulting in p = pp(x).R(Y) = %
OR(y) denote the standard deviations of the rank variables R(X)
and R(Y), respectively, and cov(R(X), R(Y)) the covariance of the
rank variables [23]. A high value of p indicates that the saliency
methods exhibit agreement in their variations across different im-
ages. Consequently, images with high (low) saliency metric scores
for one method will consistently receive similarly high (low) scores
across all saliency methods.

, where og(x) and

4 DATASETS

In the following, general information about the experiment setup is
given, before the used mosaic datasets are described in more detail.

To compute the metric scores, the relative magnitude of the FI
is used. For visualisation sake, the saliency maps are normalized
via max-scaling, mapping them to the interval [—-1, 1]. This is the
straightforward extension of the normalization used by Arias-Duart
et al. [6] to also work for saliency methods with negative FI. This
normalization preserves the 0-point of the saliency maps and leaves
the proposed metrics unchanged.

We evaluate the metrics on two different neural network archi-
tectures, with the comparatively small VGG architecture with a
depth of 11 layers [30] and the larger ResNet architecture with a
depth of 50 layers [16]. Since the VGG architecture contains batch
normalization, its implementation differs slightly between the B-
cos-version and the conventional one. To remove all bias terms in
their networks, the authors of B-cos change the batch normaliza-
tion to not contain a centering operation, resulting in a so-called
“uncentered” batch normalization [10].

In general, it is difficult to disentangle the performance of the
model and the performance of the explanation methods. Specifically,
incorrectly distributed FI and thus, a low saliency metric score,
could indicate either a high performing model with a low-fidelity
explanation method (with feature attribution distributed evenly
across a mosaic) or a bad model and a high-fidelity explanation
method. To distinguish between these cases, the saliency scores and
the model performance must always be considered in combination.
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To test the reliability over different datasets and models and
the amount of information provided by the saliency metrics, the
scenarios described in the following subsections are tested. The
hyperparameters used for the XAI methods can be found in Appen-
dix B.1.

4.1 Corner Cases with Small Datasets

To establish the overall behavior of the proposed metrics, their
performance and coherence with expectation can be tested in simple
corner cases, for which clear expectations can be formulated. As
corner cases, for which the metric behavior can be predicted, two
datasets are used with two classes and 100 mosaics per class each.
For these datasets, the classes are chosen from the ones represented
in ImageNet, with images for the mosaics chosen from all class
images at random. As all models are pretrained on ImageNet and a
benchmark of their performance is most informative without any
changes, the models are not fine-tuned on the specific datasets. This
evaluation approach limits options regarding datasets, as only ones
built from ImageNet (or at least with the same classes) can be used.
Otherwise, fine-tuning of models or relabeling of classes would
be necessary. This is contrary to Arias-Duart et al. [6], who adapt
the network architecture to the number of classes in the dataset
under consideration and thus, need to fine-tune their models. Our
approach provides an unbiased assessment of popular models but
also complicates the reporting of accuracy, as models trained on
ImageNet might have learned high-level features like the difference
between cats and dogs but not the specific difference between
certain dog breeds, resulting in a low top-1 accuracy but in a high
top-k accuracy for k > 1. Thus, both top-1 and top-5 accuracy need
to be considered to make sure that the used models have learned
relevant features to classify the datasets correctly.

A further difference to [6] is the creation of the mosaics: For the
corner cases in Sections 4.1.1 and 4.1.2, samples from the training
set of the ImageNet subset [1] are used for the mosaic construction,
instead of only test data samples (where ‘training’ and ‘test’ refer
to the corresponding partitions of this dataset). Since the aim of
this work is to test the proposed metrics for the evaluation of
different XAI methods (in contrast to e.g. performance evaluation
of the networks), no relevant effects of leakage are expected. This
assumption was confirmed in experiments with unseen datapoints
of the same dataset.

4.1.1 Easy to Distinguish Classes. In the first corner case, the mo-
saics for the saliency metrics are created with two ImageNet-classes,
which are expected to consist of very dissimilar features and thus,
should be easily distinguishable by the pre-trained models. The
target classes “tabby” and “sports car” are used and the dataset is
referred to as the Cars/Cats dataset in the following. Since there
should be (nearly) no overlap between the relevant features for both
classes, next to perfect saliency metric scores are to be expected.
One sample mosaic for this dataset can be seen in Figure 1 on the
left.

4.1.2  Difficult to Distinguish Classes. The second dataset consists
of mosaics built from two classes that look similar to laypeople
and have strongly overlapping features. The classes chosen for this
dataset are “Greater Swiss Mountain Dog” and “Bernese Mountain
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Dog”. The dataset is referred to as the Mountain Dogs dataset. For
these mosaics, it is expected that the models will not be able to
separate these classes, resulting in near-random performance and
saliency metrics. One sample mosaic for this dataset can be seen in
Figure 1 in the middle.

4.2 ImageNet

After testing the saliency metric behavior for corner cases, the third
dataset uses all classes of the ImageNet dataset [14] as described in
[6]. The mosaics constructed by Arias-Duart et al. [6] are available
online and were used here. Compared to the other datasets, this
dataset better represents most real-world computer vision tasks.
For all of the 1,000 ImageNet-classes, mosaics are created, but due
to hardware and runtime constraints, only ten mosaics per target
class are feasible, resulting in 10,000 mosaics overall. The hardware
used for the experiments and resulting runtime for this dataset is
described in Appendix A.1. For the ImageNet dataset, the mosaics
once again contain two target class images, with the other two
images being chosen at random from all other possible classes, as
can be seen on the right side of Figure 1.

5 RESULTS

In this chapter, the results and findings of the proposed saliency
metrics are discussed. At first, the results for inter-rater and inter-
method reliability are summarized, followed by some general find-
ings with the saliency methods and metrics in Section 5.3. To give
a better intuition for these results, Figure 2 provides an example
of how the saliency maps differ between the saliency methods for
ResNet50. The same can be seen for VGG11 in Figure 5 in the ap-
pendix. A more detailed view and discussion of the results can be
found in the Appendix B.

5.1 Inter-rater Reliability

Krippendorff’s & can be used as a metric for inter-rater reliability,
indicating whether the ranking of XAI methods by a saliency metric
is stable over all (or most) of the images in a dataset. Detailed results
can be found in appendix B.4. In these, some tendencies emerge:
The consistency of the saliency method ranking depends on the
model type. In the experiments, ResNet50 almost always receives
higher a-values than the VGG11-model.

SmoothGrad, LIME, Grad-CAM, and Grad-CAM++ provide only
positive FI, thus only the precision-reliability (the reliability of the
original Focus metric [6]) can be evaluated for all used saliency
methods. For the datasets, the easier the models can distinguish
between classes, the more reliable the precision ranking becomes,
with the highest values for ResNet50 for the Cars/Cats dataset with
a = 0.88 and for ImageNet with & = 0.71. The highest a-values for
VGG11 are below 0.6, thus underpinning that the saliency method
performance (and metric reliability) depends on the model type.

When the precision-reliability is evaluated for only B-cos, LRP,
IntGrad and SHAP, the results are similar, but for these methods,
additional saliency metrics can be calculated with negative FI. They
follow similar trends: The easier the dataset, the higher the re-
liability, and in general higher reliability for ResNet50 than for
VGG11, except for the false-positive-rate and specificity on Ima-
geNet. Although not perfect, the inter-rater reliability for all classes
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of ImageNet (with values between 0.49 and 0.85) shows that the
saliency metrics produce consistent results, thus enabling a user
to choose between different saliency methods. Overall, the reliabil-
ity of sensitivity, false-negative-rate, false-positive-rate, specificity,
accuracy, and F1-score is higher than for precision, showing the
added benefits of these metrics.

5.2 Inter-method Reliability

Spearman’s p correlation between the results of the metrics for dif-
ferent saliency methods can be used to examine whether mosaics
are consistently difficult to explain correctly for all methods. For
p, some dependencies emerge: The correlation values for one met-
ric differ between models on the same dataset, between different
datasets for the same model and between the different metrics. For
more detailed results, see Section B.2 and Figure 11 in the appendix.
While most correlation values are rather low (< 0.8), in some cases
for certain methods, correlations close to 1 can be seen, especially
for the datasets for which the used classes were expected to be
difficult to distinguish (especially on the Mountain Dogs dataset for
Grad-CAM, Grad-CAM++ and SHAP). On these datasets, all XAI
methods do not perform well based on the saliency metrics, thus
possibly indicating a joint failure of certain saliency methods. For
the other datasets, no clear correlation pattern emerges, with cor-
relations < 0.8. Overall, the performances of the XAI methods can
be highly correlated between some of them, given that the model
is not able to distinguish well between different classes, while for
more diverse datasets, the performances of the XAI methods are
not strongly correlated. This could be paraphrased as: “The saliency
methods tend to work individually but some of them fail jointly.”

5.3 General Findings

Additional to the more specific findings above, some general ten-
dencies for the saliency methods can be identified.

B-cos highlights the upper left corner of images, possibly be-
cause the bias was removed in the network architecture, forcing
the network to “create its own bias” via mostly irrelevant but stable
features like image edges [10] (see Figure 2 for an example).

IntGrad does seem to yield mostly random performances in the
metrics. Together with a good balance between positive and nega-
tive FI, this results in metrics close to 0.5 (see Figures 3c and 3d).
As can be seen in Figure 3a, the precision for the Cars/Cats dataset
for IntGrad is above 0.5, showing a performance better than ran-
dom guessing as indicated by the other metrics. Visually, IntGrad
explanations do mainly look like noise that seems to be stronger
on the relevant image parts.

While some methods in theory provide negative FI, the magni-
tude of their positive importance is higher than the negative one,
thus yielding misleading interpretations for some of the metrics
when inspected on their own. This is illustrated, for example, by
the precision and specificity in Figure 3: B-cos provides a high pre-
cision, but a low specificity, because it barely provides any negative
Fl-values and is tailored towards the correct attribution of posi-
tive FI. This imbalance towards positive FI is especially prevalent
when the classes in the mosaics are more difficult to distinguish
(see Figures 3c and 3d).
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Figure 2: One sample heatmap by each saliency method for the first mosaic shown in Figure 1 of the Cars/Cats dataset. The
explanations are created for ResNet50 for the target class “tabby”. The upper row shows heatmaps for methods providing
positive and negative FI, the lower one for methods with only positive FI. LIME uses a binary mask to highlight relevant image
pieces, thus a binary masking of the original image is shown here. Similar results for VGG11 are presented in Figure 5 in the

appendix.

Underpinning the initial intuition in creating the datasets in
Section 4, the precision is significantly lower for Mountain Dogs
than for Cars/Cats (Figure 3), with the precision for ImageNet
somewhere in between.

None of the tested methods provide good results in all of the
metrics over different datasets, despite a sufficiently high classi-
fication accuracy for all datasets, showing that the models have
learned relevant features (see Appendix A.2). While B-cos for ex-
ample fared well in mean and median-performance for precision
for all datasets, its specificity consistently produced values close
to 0 (due to the higher prevalence of positive FI, see above and
Figure 3a compared to Figure 3c). Here, it is important to note that
the inter-rater reliability only measures the agreement over the
saliency method ranking within a given metric but does not indi-
cate that the different metrics lead to the same ranking of saliency
methods. Complementary to the “eye-check” for B-cos and other
methods as above, this aspect could be explored via Krippendorft’s
a between different metrics on the same dataset and model. Since
the “eye-check” of the saliency method ranking between the met-
rics already showed that metrics usually produce different rankings
and no saliency method performs well in all of them, this aspect
was not explored further (Appendix B.3). An additional aspect of
reliability-evaluation could be the agreement over mean and me-
dian performances of the saliency methods over different datasets,
as this would show whether some methods consistently produce

better performances on different datasets. As an analysis of this
type of reliability just underpinned the previous results of ResNet50
providing more reliable results and method rankings mostly differ-
ing between datasets, a detailed discussion is ommitted here. For
all of the datasets, large variances in the metrics can be discerned,
thus indicating that some images produced almost perfect scores
while others received scores towards the other end of the scale.

In classical literature, it has been long known that a single metric
is not sufficient and multiple metrics are necessary to obtain a
reliable assessment of a method, especially when some sort of
unbalanced dataset is used [35]. In this paper, the existence of such
an imbalance in the saliency methods was shown.

For ImageNet, the explanation methods recommended—at least
for the properties of correctness and contrastivity—are LRP and
SHAP, although both show clear weaknesses (see appendix B.3).
LRP performs slightly better in some cases, but overall the perfor-
mance of SHAP is more consistent for ResNet50 compared to LRP,
especially for specificity and false-positive-rate. For VGG11, the
variance of LRP is lower than for ResNet50, thus rendering LRP the
best explanation method for this model for the ImageNet-mosaics.
While a recommendation for saliency methods for a specific model
and use-case can be made with the proposed metrics, the metric
values and variances also show that no method performs to com-
plete satisfaction (as, for instance, the highest mean-specificity for
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(c) Specificity for saliency methods with negative FI on the
Cars/Cats dataset.
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(b) Precision for all saliency methods on the Mountain Dogs
dataset.
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(d) Specificity for saliency methods with negative FI on the Moun-
tain Dogs dataset.

Figure 3: Exemplary results for precision and specificity for ResNet50 on the datasets with easier and more difficult to distinguish
classes. Higher values are better. Note that specificity can only be calculated for methods which provide negative FI.

ResNet50 on the ImageNet-dataset is below 0.6), prompting more
research for improved saliency methods.

Overall, the XAI methods perform differently in different sce-
narios, possibly because their underlying concepts of what con-
stitutes important features differ [39]. The reliability assessment
of the saliency metrics shows that the proposed metrics can help
to choose between saliency methods, although it should be noted
that a single saliency metric does not yield sufficient information
for this choice for a given use-case. Instead, the combination of
dataset, model, and XAI method needs to be evaluated to receive a
meaningful assessment of the properties of saliency methods.

6 DISCUSSION

This paper examined the question whether the relevant features
(i.e., the positive feature importance) for a class are actually located

on the images of this class and if this fact can be utilized to define
sensible metrics for evaluating saliency methods. Overall, this as-
sumption holds, however, the introduced metrics are not exactly
intuitive. They range between 0 and 1, where 1 can usually not
be reached and 0.5 corresponds to random guessing. Additionally,
if images of classes with very similar features are present in the
mosaic (cf. Mountain Dogs dataset), the assumption is likely to be
violated.

Another challenge for the metrics arises when, for example, all
images of one class have the same background and this background
is only present in this class in the dataset under consideration. In
such a case, the metrics provide high (resp. low) scores for the gen-
erated explanations, but the explanations would show some sort of
bias within the model when inspected by humans. It is important
to note that the saliency metrics do not contain information about
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the visual quality of explanations and rather correspond to a sanity
check. For the saliency methods examined, higher (resp. lower)
scores are always considered better, nevertheless, the metrics could
be outsmarted: for instance, an explanation method that only at-
tributes relevance to a single image pixel would lead to perfect
scores but does not provide helpful information at all.

There are also some limitations of the methodology that need to
be addressed: the random choice of images used for creating mosaics
may introduce bias, e.g., by selecting images that are too (dis)similar
and especially easy or difficult to distinguish. To mitigate this, the
experiments, including mosaic creation, can be repeated multiple
times or the number of generated mosaics can be increased. How-
ever, with the given number of mosaics, such effects are expected to
balance out within the datasets used in this paper without exceed-
ing runtime limits. Additionally, it is worth emphasizing that the
B-cos method uses different model weights and activation functions
than the other XAI methods, which could raise concerns about the
direct comparability of explanation results.

Viewed from the outside, there is also the meta-level problem:
saliency methods are used to understand and evaluate black box
ML models. Saliency metrics are then used to evaluate the saliency
methods and these metrics are then checked for reliability, etc.
From a practical viewpoint, low-level information about which
XAI methods to choose needs to be available without excessive
amounts of work for evaluating different XAI approaches. But since
there is no ground truth that can be used to verify statements
at any level, the entire framework remains shaky. On the other
hand, as there can probably not be a full ground truth explanation
of a black-box-model that is different from just the model itself,
it is necessary to employ the methods at hand to illuminate the
underlying complexities at least to some extent. Therefore, it is
crucial to always explicitly state the main assumptions of XAI
methods and possible bias that may occur when using them, as
these aspects are fundamental for selecting a suitable method for
the respective model and dataset.

For future research, it would be interesting to extend the list
of metrics to address further XAI properties listed in [24]. In ad-
dition, the proposed metrics could be applied to XAl methods on
specific benchmark datasets to analyze and evaluate the resulting
explanations.

7 SUMMARY

In this paper, new objective evaluation metrics for saliency methods
were developed based on the definition of true (false) positive and
negative FI in image mosaics. This definition required the assump-
tion that evidence towards a certain class would be more prevalent
in images of this class than in others, enabling the saliency metrics
to use image mosaics as the basis of their calculation, mimicking
common classification evaluation metrics. To test these metrics,
datasets with mosaic images were created, small ones to evaluate
corner cases with especially easy or difficult to distinguish classes
and a larger one based on all classes of ImageNet.

For the practical use of a measurement, its validity—with its
necessary condition of reliability—is crucial. Via inter-rater and
inter-method reliability, the proposed metrics were established to
be reliable in most cases, with the overall results showing that
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the performance of common saliency methods depends on the ML
model and used dataset. As no clear correlation between the dif-
ferent saliency method results could be found, it seems that the
saliency method performance also depends on the specific image
being explained and goes beyond just single images being easy
or difficult to explain. Due to their high inter-rater reliability, the
proposed saliency metrics can be used to choose between differ-
ent saliency methods for a specific use-case, although, due to the
method’s focus on positive FI, more than a single metric needs
to be taken into account where possible. As these methods only
assess the contrastivity and correctness of saliency metrics, we look
forward to proposals of objective, reliable, and valid evaluation
metrics for other properties of XAI methods and further reliability
evaluations of other saliency metrics.
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A MODEL ANALYSIS

A.1 Runtime

ADGX A100 system with 40 GB of RAM-Memory was used to carry
out the experiments described in Section 4. The code for generating
saliency maps with varying saliency methods was executed on a
20 GB MIG slice of an NVIDIA A100 40 GB GPU. The runtimes for
generating heatmaps for the ImageNet dataset from Subsection 4.2
with respect to different saliency methods can be seen in Figure 4.
These runtimes highlight the performance benefits of gradient-
based methods compared to the sample-based methods of LIME
and SHAP.

A.2 Accuracy

For the model accuracy for mosaic datasets, see Table 2 for ResNet50
and Table 3 for VGG11. The accuracy is calculated for each class
separately, with top-1 accuracy denoting whether class 1 or class
2 of a mosaic is predicted as the most likely class, top-5 accuracy
denoting whether class 1 or class 2 are predicted in the five most
likely classes. As the performance of these models is measured
on the mosaic datasets, no true negatives nor false positives are
to be expected, as all mosaics do contain images of the relevant
classes. Because of this, only the accuracy can be calculated as a
meaningful performance measure. These results show that both
models predict the relevant classes for the mosaics often enough to
expect them to have learned the relevant features for these classes.
This aids in the assessment whether the assumption is fulfilled that
models should highlight the images in a mosaic that correspond to
the target of an explanation. The accuracy for the Mountain Dogs
dataset is higher than for the others, possibly because all of the
images in these mosaics contribute to the same target classes. This
explanation is underpinned by the imbalance between positive and
negative FI, as described in Section 5.3.

B EXPERIMENTS

B.1 Hyperparameters

Table 4 lists the hyperparameters used when executing the XAI
methods in the experiments. This is done to ensure reproducibility
of the results. Hyperparameters that equal the default value and
methods that were used only with default hyperparameters are not
included in the listing.

B.2 Results

For additional saliency maps for ImageNet mosaics see Figure 6 and
for difficult to distinguish classes see Figure 7. Note that in the sec-
ond case, the saliency is more evenly distributed across the different
images in the mosaics. For both datasets, differences between the
explanations for the model types can be seen. Compared to Figure 2,
the distinction between classes is less clear in the saliency maps for
ImageNet and even less for the Mountain Dogs dataset, resulting
in worse saliency metric performance.

B.3 Metrics for ImageNet

In the following, a discussion of the results for the saliency met-
rics on ImageNet can be found. Figure 8 shows most metrics for
ResNet50 for B-cos, IntGrad, LRP and SHAP, Figure 9 displays the
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same metrics for VGG11 and Figure 10 shows the F1-score for these
methods and the precision for all considered saliency methods. For
both models, some similarities can be observed: The saliency metric
results of IntGrad are close to 0.5 with a low variance for all metrics
but precision and F1-score. Overall, the range of saliency metric
values is wide (sometimes spanning from 0 to 1), although with
the values usually concentrated on a smaller range. This can be
explained by some mosaics being easier and some more difficult
to explain for each of the methods, which is expected when using
random images from a dataset as diverse as ImageNet. While the
B-cos models do perform well in some metrics (precision, sensitiv-
ity, false-negative-rate, accuracy and F1-score), they consistently
perform bad in specificity and false-positive-rate (with values close
to 0 and 1 respectively), showing their failure to attribute nega-
tive FI correctly and a strong bias towards positive FI as discussed
in Section 5.3. Overall, based on the median performances, LRP
and SHAP seem to be the best methods, with SHAP beating out
LRP regarding the variance of specificity and false-positive-rate for
ResNet50, while the distribution of saliency results for those met-
rics is better for LRP than for SHAP with VGG11. This behaviour
does not show in the Fl1-score, which is a harmonized mean of
precision and recall. But due to the higher magnitudes for positive
FI, the F1-score mainly shows how well the positive Fl is distributed.

This is not surprising given that the F1-score can be rewritten to
2tp
2tp+fp+fn’
matters for a use-case—specificity and false-positive-rate should be

considered along with one of the other metrics.

For the methods with only positive FI, solely the precision can
be calculated. The results in Figure 10 show that the ranking of
saliency methods differs between the two models, an effect espe-
cially prominent for LIME, which provides the best mean precision
for ResNet50, but only the fifth-best for VGG11. Based on the preci-
sion, LIME seems to be the best-performing method for ResNet50
(although with a higher variance than the other methods) and
Grad-CAM for VGG11. For both datasets, they are closely followed
by B-cos, LRP and SHAP.

This shows that—if correct distribution of negative FI

B.4 Inter-rater Reliability

For detailed results for inter-rater reliability for ResNet50, see Ta-
ble 5, for VGG11, see Table 6. Note that some of the used saliency
methods only provide positive FI, thus only the precision relia-
bility can be calculated for them. These results can be found in
Table 7. The findings for the inter-rater reliability are discussed in
Section 5.1.

B.5 Inter-method Reliability

Detailed results for Spearman’s p correlation can be found in Fig-
ure 11 for ResNet50 on the Cars/Cats dataset and on the Moun-
tain Dogs dataset. These correlation values differ between the two
datasets, as for the more difficult to distinguish classes (Mountain
Dogs, Figure 11a), some methods yield highly correlated precision
values, showing that these methods tend to perform similarly on
the same images. This could be due to most images being difficult
to distinguish and some showing clear differences (or none at all)
between the dog breeds, thus effectively producing good (bad) per-
formances on the same images. For the easier to distinguish classes
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Figure 4: Visualization of the execution time of the different saliency methods in seconds. The time required to generate the
saliency maps of every mosaic in the ImageNet dataset (cf. Subsection 4.2) was measured.

Table 2: Top-1 and Top-5 Accuracy for ResNet50 on the mosaic datasets, for the standard and for the B-cos model. Note that
only the ImageNet-mosaics contain more than two classes.

top-1, top-5, top-1, top-5, top-1, top-5,
ResNet50 class 1 class 1 class 2 class 2 class 3 class 3
Cars/Cats dataset 0.27 0.73 0.175 0.765 - -
Cars/Cats dataset, B-cos 0.435 0.875 0.385 0.845 - -
Mountain Dogs dataset 0.42 0.995 0.49 0.995 - -
Mountain Dogs dataset, B-cos  0.345 1.0 0.41 0.995 - -
ImageNet 0.6256 0.8683 0.0423 0.1971 0.0447 0.2148
ImageNet, B-cos 0.476 0.8095 0.1548 0.4727 0.1701 0.496

Table 3: Top-1 and Top-5 Accuracy for VGG11 on the datasets for each of the classes represented in the mosaics, for the standard
and for the B-cos model. Note that only the ImageNet-mosaics contain more than two classes.

VGGi1 top-1, top-5, top-1, top-5, top-1, top-5,
class 1 class 1 class 2 class 2 class 3 class 3
Cars/Cats dataset 0.32 0.52 0.28 0.535 - -
Cars/Cats dataset, B-cos 0.375 0.805 0.435 0.86 - -
Mountain Dogs dataset 0.405 0.995 0.42 0.985 - -
Mountain Dogs dataset, B-cos 0.31 0.99 0.325 0.98 - -
ImageNet 0.3451 0.5933 0.0468 0.133 0.0447 0.1384
ImageNet, B-cos 0.3996 0.685 0.1265 0.328 0.1386 0.3408

Table 4: List of hyperparameters used when executing the XAI-methods during the experiments.

Saliency Method Hyperparameters

LIME num_samples = 1000
SHAP num_samples = 1500, super_pixel_size = 56 (equals 8 X 8 = 64 superpixels per mosaic)
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Figure 5: One sample heatmap by each saliency method for the first mosaic shown in Figure 1 of the Cars/Cats dataset, here
for VGG11. The upper row shows heatmaps for methods with positive and negative FI, the lower one for methods with only
positive FI. LIME uses a binary mask to highlight relevant image pieces, thus a binary masking of the original image is shown
here. Note the differences to the explanations for the same image for ResNet50 in Figure 2.

Table 5: Krippendorff’s o for B-cos, IntGrad, LRP and SHAP for all metrics for ResNet50.

False- False-
Precision  Sensitivity Negative- Positive-  Specificity Accuracy F1-Score
Rate Rate
Cars/Cats dataset 0.81 0.89 0.89 0.82 0.82 0.83 0.85
Mountain Dogs dataset 0.24 0.98 0.98 0.96 0.96 0.35 0.67
ImageNet 0.61 0.85 0.85 0.49 0.49 0.69 0.74

Table 6: Krippendorff’s « for B-cos, IntGrad, LRP and SHAP for all metrics for VGG11.

False- False-
Precision  Sensitivity Negative- Positive-  Specificity Accuracy F1-Score
Rate Rate
Cars/Cats dataset 0.56 0.59 0.59 0.79 0.79 0.64 0.56
Mountain Dogs dataset  0.15 0.72 0.72 0.67 0.67 0.14 0.52
ImageNet 0.52 0.58 0.58 0.67 0.67 0.62 0.57

(Cars/Cats, Figure 11b), no clear correlation tendencies exist, with
the highest value below 0.6 and most being close to 0, with some
even below 0. This shows that the saliency methods do not con-
sistently agree on which of the mosaics in this dataset is easier or
more difficult to attribute correctly. Since this dataset approximates
real-world use-cases better than the Mountain Dogs dataset, it can

be concluded that for real-world applications, saliency methods will
likely struggle with different images and the difficulty of explaining
a decision is not inherent to images but related to the used saliency
method. In Section 5, this was summarized as “The saliency methods
tend to work individually but some of them fail jointly”.
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(b) Saliency maps for VGG11 on an ImageNet mosaic.

Figure 6: Saliency maps for the ImageNet mosaic shown as the first image in Figure 6a. The saliency was calculated regarding
the target class “ear, spike, capitulum”, to which the right two images in the mosaic belong.
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(b) Saliency maps for VGG11 on a mosaic of the Mountain Dogs dataset.

Figure 7: Saliency maps for the mosaic shown as the first image in Figure 7a. The saliency was calculated regarding the target
class “Bernese Mountain Dog”, to which the lower two images in the mosaic belong.
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Figure 8: Results of the saliency metrics on the ImageNet mosaics for the ResNet50 model.
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Figure 9: Results of the saliency metrics on the ImageNet mosaics for the VGG11 model.




FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

F1l-5core

Precision

ImageNet

1.0

0.8

0.6

0.4

0.2

0.0

® Mean
+ Median

]
&
¥

I3

&
L
S

s

(a) F1-score for ResNet50.

ImageNet

1.0+

0.8 1

0.6 -

0.4 4

0.2 4

0.0

Mean
Median

T T
&
&

¥

(c) Precision for all methods for ResNet50.

G(D

&

o

F1l-5core

Precision

Benjamin Fresz, Lena Loercher, and Marco F. Huber

ImageNet

1.0

0.8 1

0.6 1

0.4 A

0.2 A

0.0 1

® Mean
+ Median

T T
&

¥ &

&
Cl
¢ &

g

(b) F1-Score for VGG11.
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Figure 10: F1-Score and precision for both models on the ImageNet mosaics.

Table 7: Krippendorff’s « for B-cos, IntGrad, LRP,SHAP, LIME, Grad-CAM, Grad-CAM++ and SmoothGrad for precision for

ResNet50 and VGG11.
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ResNet50 VGGI11

Cars/Cats dataset
Mountain Dogs dataset
ImageNet

0.88
0.25
0.71

0.56
0.14
0.56
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(a) Spearman’s p on the Mountain Dogs dataset for the precision metric for ResNet50.
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(b) Spearman’s p on the Cars/Cats dataset for the precision metric for ResNet50.

Figure 11: Spearman’s p for the precision metric on different datasets. While the dataset with difficult to distinguish classes
produces high correlation values (nearing 1 for Grad-CAM/Grad-CAM++), the dataset with easy to distinguish classes produces
mostly random correlations, with the highest one between Grad-CAM/Grad-CAM++ and Grad-CAM/LRP with 0.54.
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