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Abstract advances in Al while minimizing its environmental harms, has di-
As the climate crisis deepens, artificial intelligence (AI) has emerged vided Al researchers and practitioners alike. Some maintain that its
as a contested force: some champion its potential to advance re- potential to accelerate sustainable breakthroughs will exceed its en-
newable energy, materials discovery, and large-scale emissions vironmental costs by increasing renewable energy production and
monitoring, while others underscore its growing carbon footprint, transmission or aiding in the design of more sustainable materials
water consumption, and material resource demands. Much of this [76, 99]. Others point to the soaring resource demands of large-
debate has concentrated on direct impacts—energy and water usage scale Al models and their negative environmental impacts from
in data centers, e-waste from frequent hardware upgrades—without non-renewable energy use, water consumption, and extraction of
addressing the significant indirect effects. This paper examines how minerals [24, 28, 45, 57]. These opposing positions tend to center on
the problem of Jevons’ Paradox applies to Al whereby efficiency the technology’s direct impacts, measured in energy consumption
gains may paradoxically spur increased consumption. We argue and greenhouse gas (GHG) emissions from data centers, or in the
that understanding these second-order impacts requires an inter- e-waste that accumulates as hardware becomes obsolete.
disciplinary approach, combining lifecycle assessments with socio- Yet a critical dimension of AI’s climate footprint lies outside these
economic analyses. Rebound effects undermine the assumption direct resource and emissions calculations. Recent work on indirect
that improved technical efficiency alone will ensure net reductions impacts [63] warns of potential “rebound effects”, whereby gains in
in environmental harm. Instead, the trajectory of AI’s impact also efficiency spur higher overall consumption. These second-order ef-
hinges on business incentives and market logics, governance and fects challenge the presumption that purely technical optimizations
policymaking, and broader social and cultural norms. We contend alone will deliver sufficient climate benefits. Cost savings achieved
that a narrow focus on direct emissions misrepresents Al’s true by more efficient Al hardware, for example, can spur increased
climate footprint, limiting the scope for meaningful interventions. demand for new Al functionalities, which in turn drive further
We conclude with recommendations that address rebound effects hardware upgrades and increase costs. Economists refer to such
and challenge the market-driven imperatives fueling uncontrolled transformations as jevons’ Paradox, which was proposed in the
Al growth. By broadening the analysis to include both direct and 19th century by economist William Stanley Jevons, who observed
indirect consequences, we aim to inform a more comprehensive, that as coal use became more efficient, it was also paradoxically
evidence-based dialogue on AT’s role in the climate crisis. leading to an increase, and not a decrease, in the consumption of
coal across different industries [60]. The addition of increasingly
Keywords efficient Al to systems from commerce to transportation can have

far-reaching effects on our societies, our behaviors, and the future
paths available to us in the race against climate change.

This system-level complexity underscores the inadequacy of the
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social, political, and economic contexts in which Al systems are
developed and deployed. Although efficiency has been a defining
ethos in recent Al research, reflected in “scaling laws” that promise
ever-more-powerful models [64], effective climate action requires
grappling with how these systems reshape markets, cultural norms,

1 Introduction and policy priorities. Thus, understanding rebound effects requires

As the climate crisis intensifies, the environmental impacts of arti- drawing on both qualitative and quantitative methods, drawn from
ficial intelligence (AI) have become the subject of many a polarized computer science, economics and the social sciences, as they hinge
debate. The question of whether the potential positive impacts of not on algorithmic design but human adaptation and use patterns.
Al outweigh the negative ones, and how to foster technological Adopting an interdisciplinary approach allows for both a rigorous

lifecycle accounting of direct effects as well as understanding the
social behaviors that Al can induce or displace.

This work is licensed under a Creative Commons Attribution 4.0 International License. This paper aims to bridge the gap in the existing literature by,
FAccT 25, Athens, Greece first, providing a brief overview of the debate about AT’s direct pos-
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with an in-depth exploration of Al’s indirect impacts, including sys-
temic rebound effects, and propose actionable strategies to mitigate
them (§3). We conclude by proposing promising directions for fu-
ture exploration and research toward improving our understanding
of the full spectrum of AI's impacts on the environment. In short,
we argue that meaningfully contending with Al’s climate impacts
requires grappling with both direct and indirect effects. Otherwise,
the industry risks pinning its hopes on technical efficiency gains
alone without recognizing the social, cultural, and economic con-
texts that materially shape technology uses. Our aim is to support
the field in moving away from polarized extremes and toward a
nuanced position that acknowledges the state of climate change
and the pressing need to manage all of AT’s climate impacts. By ex-
panding this dialogue and grounding it in evidence across multiple
disciplines, we can develop strategies that genuinely address AI's
role in environmental sustainability.

2 Al and the environment

The environmental impacts of Al were largely overlooked until
recent years. Now these issues figure prominently in both scientific
debates and public media. Central to this discourse is the question
of whether AT’s capacity to help mitigate climate change, e.g. by
optimizing energy use or discovering sustainable materials, truly
exceeds its environmental costs in terms of energy consumption,
water usage, and mineral extraction. Some contend that AI's poten-
tial benefits justify widespread deployment across various climate-
focused applications, whereas others caution that unrestrained
expansion may ultimately be more harmful than beneficial. In this
section, we review these competing perspectives on AI’s positive
and negative environmental impacts as presented in academic and
industry discussions.

2.1 Arguments that Al is a net climate negative

Research into AI’s total usage of natural resources is still nascent,
but initial studies have highlighted significant concerns across mul-
tiple domains of direct impact. Papers have addressed carbon emis-
sions from training large models [67, 69, 70, 120], water consump-
tion for cooling servers [52, 80], and the mining of minerals for
technical infrastructure [24]. In the present section, we present
the different directions of study pursued in terms of AI's negative
environmental impacts and discuss the observations that have been
put forward.

Al is using increasing amounts of energy, most of it generated from
nonrenewable sources. Data from the International Energy Agency
(IEA) has provided the strongest international benchmark. They
note that the electricity demand from data centers, driven heavily by
Al training and inference, is currently at 2% of total global electricity
and will more than double by 2026, surpassing Canada’s national
power use [45, 56]. This growth is putting strain on energy grids
around the world and resulting in many countries, such as Ireland
and the Netherlands, placing a moratorium on the construction of
new data centers in certain regions. In the United States, the demand
for electricity has surged in the past twelve months - according to
a recent report into the national grid, electric utilities have nearly
doubled their forecasts of how much additional power they will
need in the next five years [137].
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Al data centers are putting stress on already strained aquifers glob-
ally. The construction and operation of data centers requires vast
quantities of water, which is used for cooling servers to prevent
them from overheating by circulating cool water through radiators.
This cooling process requires a constant supply of cool, fresh water,
which is heated up during the process, causing a significant portion
of it to evaporate, whereas the rest has to be cooled and filtered
before being reused or discharged back into local aquifers [96].
Corporate reports have revealed the scale of water demand in-
creases, with Microsoft reporting a 34% increase in global water
consumption between 2021 and 2022, topping 1.7 billion gallons,
while Google observed a 20% uptick in the same period [42, 78].
Other studies have sought to estimate water usage at the level of
individual AT models, with one paper suggesting that 10-50 queries
on GPT-3 consumes around half a liter of water [68]. By 2050, 50%
of the world’s population is projected to live in a region affected by
water scarcity [14], but the full impacts of data center water usage
is unknown as “the entire data centre industry suffers from a lack
of transparency” [80].

The rare earth minerals needed to produce computing hardware
are mined in unsustainable and opaque ways. Metals such as cobalt,
lithium, coltan, gallium, copper, tungsten, and germanium are re-
quired for Al hardware and infrastructure. Individual studies have
looked at the impacts of mining lithium cobalt, copper, and rare
earth for consumer devices (smartphones, tablets) to the GPUs and
TPUs powering large-scale Al model training and addressed the
resulting environmental damage and impact on local conflict and
war. One study specifically addressed mining on indigenous lands,
with 54% of technology-critical materials drawn from what they
describe as Indigenous or peasant territory, while 62% were ex-
tracted from drought-prone zones [86]. The mining of these metals
also comes with a cost to the environment, given the tonnes of
earth that have to be mined, the radiation produced, and the toxic
waste created [28]. Taiwan Semiconductor Manufacturing Com-
pany (TSMC), the company that manufactures the GPUs designed
by NVIDIA (among other companies), citing the complexity of their
supply chains and proprietary information of its customers, also
does not provide granular data for their suppliers nor their internal
processes (such as chemical purification) [136], meaning that it is
impossible to carry out a full life cycle analysis of the hundreds of
thousands of GPUs that are designed and manufactured each year
and used to train and deploy AI models.

Al is responsible for a large amount of greenhouse gas (GHG) emis-
sions. Despite significant efforts by Al-driven companies to invest
in renewable energy and meet net-zero emissions pledges, all ev-
idence indicates that direct GHG emissions due to Al are on the
rise. Many Al companies are reporting significantly higher GHG
emissions over earlier baselines, likely driven by increases in de-
velopment and use of generative Al For example, in their 2024
annual environmental sustainability report (ESG), Google reports
a 48% increase in GHG emissions since 2019 which they attribute
primarily to “increases in data center energy consumption” [42],
Baidu reports 32.6% increase in GHG emissions over 2021 citing
“rapid development of LLMs” posing “severe challenges” to their
development of green data centers [9], and Microsoft cites a 29.1%
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increase since 2020 “as [they] continue to invest in the infrastruc-
ture needed to advance new technologies” [78]. In fact, one recent
analysis found that the real GHG footprints of major tech com-
pany data centers can exceed reported values by over 600% [88]. In
response, Al-driven technology firms are increasingly looking to
nuclear energy as a lower-carbon alternative to fossil-fuel energy
generation that can still provide 24/7 power to datacenters, both by
re-commissioning existing infrastructure, such as the Three Mile
Island and Susquehanna nuclear power generation facilities in the
U.S. state of Pennsylvania [25], and exploring future development
of more modern small modular reactors (SMRs) [124]. In addition to
the regulatory and security challenges of increasing nuclear power
generation capacity, nuclear power presents a distinct set of envi-
ronmental harms related to disposal of nuclear waste, and increased
water consumption required for cooling [92], as well as operational
bottlenecks that complicate its widespread adoption [84].

Al makes oil and gas extraction processes even more harmful to
the environment. Al technologies are currently extensively used
in oil and gas exploration and drilling, significantly improving
efficiency and increasing yield [110, 123]. These enabled emissions
are difficult to quantify due to lack of corporate transparency and
reporting, but they have been attracting scrutiny in recent years,
given the environmental harm that they perpetuate. For instance, a
coalition of Microsoft employees estimated that a single deal the
company struck with Exxon Mobil that uses Al to expand oil and
gas production in Texas and New Mexico by 50,000 barrels of oil per
day could add up to 640 percent more carbon emissions compared to
the company’s carbon removal targets for the year [119], yet these
numbers were not included in the company’s carbon accounting
and reporting efforts [118]. Other firms have been equally opaque
about their Al-driven enabling of the oil and gas exploration, but
a Greenpeace report from 2020 ties all of the major technology
companies to the sector [44].

Al contributes to the ballooning issue of electronic waste. Al’s
expanding operational footprint also contributes to electronic waste
(e-waste), which is now the fastest-growing segment of solid waste
worldwide, reaching 62 million tonnes in 2022. Ongoing reports
have pointed to the urgent need to find ways to reduce the amount
of waste and to reuse these materials more effectively given the
status of e-waste as both an environmental and health hazard [98].
The UN’s Global E-Waste Monitor 2024 showed that about 22% of
e-waste has been shown to be formally collected and recycled, with
global generation of electronic waste rising five times faster than
e-waste recycling [10]. The remainder ends up dumped in landfills,
often in developing countries, where researchers assess both how
hazardous substances like mercury, arsenic, and lead leach into
local ecosystems and how they impact public health. High turnover
in Al hardware is accelerating e-waste output: although GPUs can
theoretically last about five years, the push for higher performance
is prompting more frequent upgrades — one recent study estimates
that Al will generate an additional 1.2-5 million metric tons of
e-waste by 2030 [134].
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2.2 Arguments that Al is a net climate positive

The argument that AI will ultimately be more beneficial than harm-
ful to the environment is primarily based on the narrative that Al
can be sustainably developed and used for applications that directly
benefit the environment, or that could accelerate the technologi-
cal advances needed to address climate change. However, claims
around AT’s sustainability and significance in enabling new sci-
entific advances remain largely hypothetical, with little explicit
evidence or quantitative analysis of how the overall impact of Al
applications, which may cause equal or greater harm to the en-
vironment or even accelerate climate change, will be ultimately
beneficial. We discuss the main assertions supporting AI’s positive
role with respect to climate change in more detail below.

Al applications can contribute to climate change mitigation and
adaptation. The positive potential of Al for climate action has gen-
erated considerable enthusiasm, and there are many existing and
in-progress projects and initiatives that aim to harness this poten-
tial into concrete tools and applications [99, 132]. There are several
key areas in which this is particularly salient, from generating
insights from large quantities of data in different modalities to op-
timizing complex systems and tools [21]. Concretely, this can be
seen in applications of Al that analyze satellite imagery to iden-
tify deforestation [133], methane leaks [102], or even the health of
coral reefs from space [16]. Al has also improved the accuracy of
weather forecasts, which can help renewable energy grid operators
predict the output of solar panels and wind turbines, which can
help streamline the transition towards renewable energy sources
on a global scale [66, 107] In recent years, the development of Al
for accelerating scientific discovery in materials science has be-
come an area of focus, especially in applying generative Al models,
which are able to assess or generate potential new compounds with
climate-positive applications such as renewable energy and carbon
capture [12, 76, 140]. Finally, the use of Al in solar geoengineer-
ing (i.e. injecting aerosol particles into the atmosphere to reflect
sunlight and reduce global warming) has also gathered traction,
given Al’s potential to help predict the impacts of geoengineering
on existing ecosystems and avoid possible negative side effects [3].

AI’s negative climate impact is negated by carbon-free energy and
carbon offsets. Al-driven products and services are the primary
contributor to AI's direct environmental impacts, and leading Al
companies including Google, Microsoft, Amazon and Meta have
committed to achieving net-zero carbon emissions for their busi-
ness operations, including Al development and use, within the
next 5-15 years [6, 42, 77, 78]. The primary mechanism by which
these companies plan to achieve their goal is by increasing the
use of renewable energy over that period, alongside compensat-
ing for emissions using market-based mechanisms such as power
purchase agreements (PPAs), , long-term contracts between energy
providers and customers who promise to purchase a certain amount
of generated energy over a decades-long horizon, carbon offsets,
and investment in carbon-reducing technologies. The high-level
idea behind these market-based mechanisms is that any carbon-
producing activity can be negated by an equally carbon-reducing
activity, resulting in net zero emissions globally. In the absence of
significant advances in renewable energy production, storage and
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distribution (which, like other transformative changes in the climate
space, would also require significant investment in infrastructure
and navigating corresponding sociopolitical systems), PPAs and
carbon offsets will remain necessary to fill the gap. However, off-
setting was only ever meant to serve as a temporary stop-gap to
help reduce emissions in the short term, and does not represent
a viable replacement to reducing actual emissions. Fundamental
limitations to carbon offsetting are: (1) the difficulty of proving
additionality, or that the carbon-reducing activity would not have
happened regardless of investment or purchase of the offset [17, 46],
and (2) that offsetting rarely mitigates localized impacts to the com-
munities where emissions or other environmental degradation is
occurring. Increasingly, companies such as Intel and TSMC are
reporting annual water withdrawal and consumption as well, and
compensating with market-based water offsets which are subject
to the same challenges [138].

Increases in efficiency will negate growth in Al resource consump-
tion. Another common viewpoint is that the direct environmental
impacts of Al will diminish over time due to increases in hardware,
software and algorithmic efficiency. Patterson et al. [90] argue that
“the carbon footprint of machine learning training will plateau,
then shrink” thanks to continued innovations in machine learn-
ing models, specialized hardware platforms, data center efficiency,
scheduling and use patterns, which will reduce overall energy use
and emissions. The claim that increasing Al efficiency will lead to
an overall reduction in AT’s resource use is a clear example of why
a deeper engagement with indirect effects is needed in the work
on Al and climate change.

Similarly to Jevons’ Paradox, just because an Al model becomes
more efficient, that does not imply that overall Al resource consump-
tion will decrease, and in fact the inverse effect is highly plausible.
However, as Koomey and Masanet [65] cogently argue, this is not
the first time the alarm has been raised about rising energy use due
to technology, and that similar projections made in the dot-com
boom of the early 2000s failed to materialize. They cite poor data
availability, flawed methodology, and inaccurate reporting as causes
for inaccurate projections in data center energy use that ultimately
did not take into account significant improvements in data center
efficiency. Similar uncertainty is clouding the prediction of Al’s
energy use, and we are well aligned with Koomey and Masanet [65],
Masanet et al. [74] and others in calling for more granular trans-
parent data from technology firms and service providers, and more
rigorous analysis of available data. This does not imply, however,
that AI will necessarily follow the same trend as past technological
advances. Further, although data center energy use is a relatively
accessible statistic for approximating the environmental impacts
of ICT, it represents only small portion of the diverse direct and
indirect negative environmental impacts arising from Al, which
extend far beyond GHG emissions due to the energy required to
develop and use Al models.

There is no reason to focus on Al over other technological advances
or sectors. Some would argue that there is no reason to raise con-
cerns around the current or future energy use (and corresponding
environmental impacts) of Al specifically, as compared to any other
way that energy might be used, such as “for watching television, mi-
crowaving popcorn, [or] powering lights” [18]. This line of thought
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posits that Al will be subject to the same market pressures, such
as energy prices, as any other use case, and as a result will ben-
efit from the same innovations, such as a market transitions to
renewable energy. This oversimplification ignores the reality that
(1) Al is already responsible for non-trivial negative environmental
externalities and (2) we can, and likely should, regulate certain
uses of Al as appropriate/inappropriate or necessary/unnecessary,
and that this does require breaking down the monolith of “AI” into
different use cases and corresponding judgments of potential utility.
For example, under a limited energy or emissions budget, we might
selectively incentivize uses of Al that contribute towards the UN’s
sustainable development goals [130] or mitigate national security
concerns, over e.g. generating personalized ads for social media
(as we discussion in Section 3). Finally, AI does differ substantially
from other energy sinks in its potential to engender vast transfor-
mations in the economy and society, similar to how the advent of
the Internet has undeniably changed the nature of work, education,
and social interactions. Purely economic incentives have obviously
failed to align well with environmental sustainability in the past,
and Al is no different; this does not mean that we should not strive
to do better with this new technology.

While debates over AI’s role in climate change and sustainability
have become increasingly polarized, both sides have tended to
focus only on the direct impacts of this technology— positive and
negative. But direct effects are not the whole story. As we show
in the next section, the integration of Al into tools and systems
reshapes social structures and influences human behavior, which
ultimately has complex environmental consequences.

3 Indirect Impacts and Rebound Effects

In economics and lifecycle assessment, direct impacts, such as those
described in the previous section, are those engendered by the prod-
uct during its lifecycle, whereas indirect (or second order) impacts
refer to systemic responses to the development of the product in
terms of behavioral or structural changes which affect on other pro-
cesses, structures and lifestyles [22, 97, 136]. Indirect impacts also
include rebound effects, which occur when the improvement of one
aspect of a product results in unintended negative consequences
due to increased adoption, usage, and workloads [13]. These im-
pacts inevitably come with consequences to the environment due
to the increased usage, or a redistribution in the usage, of natural
resources. Given that Al pervades many different areas of society
and economic sectors, it is more difficult to enumerate all of the
possible indirect impacts and rebound effects that it can have, which
would involve considering the different interactions at play within
every sector and between them [23, 53]. Nonetheless, our aim in
this section is to propose a way of thinking about the indirect envi-
ronmental impacts of Al that can help inform discussions around
AT’s environmental costs and benefits to make them more complete
than those described in Section 2. In Table 1, we take elements from
the qualitative taxonomy for second order environmental effects of
ICT proposed by Borjesson, Rivera et al. [97] as well as the initial
work on the indirect impacts of Al by Kaack et al. [63]. We build
upon and adapt both of these approaches to get a better idea of the
different types of indirect environmental impacts of Al technolo-
gies and, to the extent possible, propose approaches to track and
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mitigate them to ensure that given interventions do not exacerbate
the very things that they were meant to improve.

We further describe each type of effect below, organizing AI’s
rebound effects into three themes: material objects and physical
spaces (§3.1), micro- and macro-economic processes (§3.2), and
society and human behavior (§3.3). We provide examples of each,
describing the complex ways in which Al-enabled tools and services
change existing structures, with unintended ripple effects on the
environment.

3.1 Material Rebound Effects

Al is impacting the distribution of objects and physical space by
changing the way products are made and distributed, and the func-
tionalities that they need to have in order to allow us to interact
with Al tools and systems. This has material rebound effects across
complex global supply chains, which inexorably changes the way
natural resources are exploited, transported, and combined.

For instance, substitution impacts arise when one product or
service replaces another, rendering digital something that was previ-
ously analog (i.e. dematerializing it). Recent examples of this include
online streaming which has replaced VHS cassettes, vinyl records,
CDs and DVDs, as well as e-readers substituting print books and
magazines [48]. This can come with both positive and negative im-
pacts in terms of sustainability: Increased capacity and efficiency of
new technologies (e.g. many different movies and TV shows being
available on a single streaming platform) can be invalidated by the
increased materials needed to support the underlying infrastructure
needed to host and deliver these technologies [95]. For instance,
a life cycle assessment (LCA), which evaluates the environmental
impacts of an artifact arising throughout its existence (typically
including disposal), has been performed comparing print books to
e-readers, finding that 115 books would produce the same amount
of CO3 as a single Amazon Kindle device [32, 103]. In the case of
Al many previously material tools and products are being substi-
tuted by digital, Al-enabled systems, such as paper maps having
been replaced by digital navigation for routine travel. Substitution
impacts may occur at varying speeds and may be more gradual. For
instance, only a fraction of illustrations such as photographs and
artworks have, as of yet, been replaced by Al-generated images,
and combinations of Al tools and analog dictionaries are used for
translation and writing tasks. While these substitution impacts are
likely environmentally-positive (given that it is no longer necessary
to manufacture the equipment and supplies needed to carry out
the original task), the environmental impacts of developing and de-
ploying these Al-enabled tools remains under-explored and direct
comparisons are seldom performed, or even possible using status
quo data and methodology (see Section 3.4).

Another type of material rebound effect, referred to as the scale
effect, occurs when large-scale production or usage of a product
has a lesser environmental impact, therefore reducing some of
the environmental impacts incurred. For instance, purchasing raw
materials in bulk or wholesale lowers overall production costs for
businesses, and manufacturing on a larger scale allows a more
efficient use of products that would otherwise be wasted [139].
Scaling is a core part of Al research and practice, and the promise of
“methods that continue to scale with increased computation even as
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the available computation becomes very great” [121] has become
a core tenet in the field. This is often guided by so-called scaling
laws that predict the optimal model size and number of training
steps based on data availability, incentivizing the development and
deployment of increasingly large models as more data becomes
available [49]. At a more granular level, hardware optimizations
such as parallelization, do in fact support these economies of scale;
e.g. batched inference on a GPU scales sub-linearly in the number
of examples, allowing multiple queries to be performed at once
at only a marginally higher cost [109]. In fact, batching, caching
and other optimization techniques are routinely used as a means
to improve the scaling of Al allowing more users to interact with
ever more powerful technologies [93, 141]. However, it remains
unclear to what extent this pursuit of bigger models requiring more
computation is counteracted by optimization approaches that are
used in parallel, and the consequences this might have on power
grids and supply chains worldwide.

These kinds of shifts in the way objects and processes operate
can, in turn, come with space rebound effects that change the
way physical space is used with the introduction of a new prod-
uct. For instance, new approaches such as e-commerce have mani-
fested changes in the physical space occupied by brick-and-mortar
stores and warehouses, resulting in smaller stores and bigger ware-
houses [127]. This, in turn, has impacts on supply chain dynamics,
redistributing the environmental footprint of operations (e.g. heat-
ing and cooling), logistics and transportation [41]. Similarly, the
proliferation of videoconferencing platforms and the increased ac-
cessibility of high-speed internet, which facilitate remote work,
also comes with space rebound effects, with more people working
from home, requiring home offices (and therefore bigger homes),
and less need for dedicated office space in commercial buildings,
with further consequences in urban planning, mobility, and build-
ing maintenance [54]. Finally, the size of digital devices has been
steadily shrinking over the last decade. For instance, the average
mass of a mobile phone shrank by half in the last decade [50],
whereas the average size of data centers has doubled [115]. With
the advent of user-facing Al tools and services running on shrink-
ing mobile devices, the configuration of data centers themselves
has shifted from a distributed network of smaller, in-house server
rooms to warehouse-sized hyperscale data centers that have tens of
thousands of servers in one place. These large, monolithic concen-
trations of servers enable the large-scale training of Al models, since
it allows the high-speed interconnection of thousands of compute
nodes serving as a single supercomputer [51]. While hyperscale
data centers typically achieve the highest efficiency (measured as
PUE), their resource consumption intensity, further magnified by
their exceptionally high geographic concentration [57], can put
undue strain on local infrastructure. For example, Loudoun County
in the U.S. State of Virginia has become known as “Data Center
Alley,” hosting 25 million square feet of data centers that use a
quarter of the state’s energy and put extreme strain on its energy
supply [129].
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Examples for AI's environmental impacts

Substitution impacts

Art replaced by Al-generated imagery
Encyclopedias and books replaced by Al-generated content

Space rebound effects

Datacenters are getting bigger while devices are getting smaller

Scale effects

Al models growing in size and complexity

Direct economic rebound effects

AT hardware getting more efficient, yet datacenter energy usage is rising

Indirect economic rebound effects
to interact with Al systems

More consumer devices (speakers, appliances, etc.) that allow users

Economy-wide rebound effects
renewable energy capacity to be expanded

Power purchase agreements from Al compute providers enable global

Induction impacts

Targeted ads that use Al to induce more consumption

Time rebound effects

Al-optimized navigation

Robots doing household chores

Table 1: Examples of AI’s indirect impacts and rebound effects, expanding on Borjesson Rivera et al [97].

3.2 Economic Rebound Effects

As seen in Section 2, Al is increasingly integrated into economic
systems of profit and production, making existing tools more pow-
erful and creating new ones. But these integrations can engender
macroeconomic ripple effects across the technology sector as well
as adjacent ones, changing structures and processes, as well as
transforming whole industries.

Direct economic rebound effects refer to situations in which
the improved efficiency of a product decreases its price, therefore
leading to an increase in its consumption. In the centuries since the
concept of Jevons’ paradox was developed, similar rebound effects
have been observed with respect to energy [40] and water [33],
as well as in domains such as road travel (where improvements
to roads have been found to result in increased congestion [126])
and agriculture (where increasing the yield of a crop makes it
more profitable to grow it, thereby increasing land use overall [11]).
They are also the most common type of indirect effects that are
discussed in conjunction with many technological innovations (see
[63, 135]). Al is no exception to direct economic rebound effects.
While efficiency improvements are being made to the hardware
used for training and deploying AI models [9, 82, 89], NVIDIA
shipped 3.7 million GPUs in 2024 (more than a million more units
than in 2023) due to increased demand, despite these improvements
in efficiency [105]. The data centers that host this hardware are
also becoming more efficient, with the average PUE (Power Usage
Efficiency) dropping steadily in recent years [37, 106]; however, the
energy use and environmental impacts of these data centers has
been rising (as described in Section 2).

Indirect economic rebound effects are similar to the direct ef-
fects described above, but instead of improved efficiency increasing
the usage of the same product, it affects a different product. This
kind of rebound effect is also known as a real income effect because
the reduced price of one product means that consumers have more
income available to spend on other products and services [55]. For
instance, money saved from more fuel-efficient vehicles can be
spent on air travel or consumer products [94, 112]. For Al, indirect
economic rebound effects can be observed for consumer electronics
and “smart” devices such as speakers, microwaves and refrigera-
tors. While the primary function of these devices is not Al-driven,
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they can use Al to propose recipes, answer questions and curate
playlists. As more and more Al-enabled consumer tools are de-
veloped, the pressure to upgrade existing devices to benefit from
these tools increases as well. However, these upgrades come with
a price in terms of the natural resources required to manufacture
them, as well as to process user data and respond to user queries in
real-time [58]. For example, when new functionalities are released
on smartphones, they often require purchasing the most recent
versions of phones to use them, as was the case with the recent
launch of Apple Intelligence, which runs only on the most recent
generations of iPhones [7], as well as running most of its processing
in the cloud, rather than on-device [34].

On a more macro level still, economy-wide rebound effects
occur when an innovation provokes far-reaching changes in the
production and use of other goods, producing flow-on effects in
the economy at large. For instance, improvements in global en-
ergy efficiency and fuel use have enabled the development of new
economies on a global scale, allowing the creation of new indus-
tries [87]. These types of rebound effects can be particularly large
for so-called “general-purpose technologies” such as electricity, the
steam engine and the Internet, since these can have global spillover
effects on industries and labor markets [111, 112]. Estimating the
scope of economy-wide rebound effects has historically been dif-
ficult [117], especially for technologies [43]. One way in which
Al is concretely impacting the economy at large is via PPAs, as
mentioned in Section 2.2. In 2020, Amazon, Microsoft, Meta, and
Google alone accounted for almost 30% of all PPAs purchased by
corporations worldwide [131], changing the scope and extent of the
mechanism as a whole. Renewable energy PPAs mitigate the risk of
investment in renewable energy infrastructure, thereby supporting
its development [122]. Further, while a portion of the generated
renewable energy is transmitted to purchasers in practice, the re-
mainder is added to the energy grid in that region, allowing other
users to benefit from its availability. It has also been proposed that
foundation models are general purpose technologies with corre-
sponding potential for broad impacts to the economy and labor
markets [35]. Analyzing the impact of these changes in the future
will be necessary to validate this claim (we discuss approaches to
tracking AI’s indirect impacts in Section 3.4).
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3.3 Societal and Behavioral Rebound Effects

As users of technology and citizens of society, our behaviors are
shaped and affected by the technologies we use. This has increas-
ingly become the case for Al as it becomes more intertwined in
daily activities such as shopping, travel, household chores, and
the workplace. In this section, we describe ways in which AI can
impact human behaviors and how those changes, can have broader
environmental impacts in turn.

Induction effects occur when the savings in resource consump-
tion (e.g. energy or water) gained through improved efficiency are
exceeded by the increased consumption and thereby production of
either the materials or the final products. For instance, the advent of
fast fashion and mass-produced furniture have reduced the quantity
of natural resources, such as wood or cotton, needed to produce
a single piece of clothing or furniture. However, the amount of
plastics, petrochemicals and waste that are engendered by the in-
creased accessibility of these items and therefore their increased
consumption are damaging to the environment [81]. In the case of
Al, a prime example of this is targeted advertising, one of the most
lucrative commercial applications of Al with revenues reaching $36
billion in 2024 [116]. Advertising also constitutes the main source
of revenue for many technology companies such as Google and
Meta [85]; Amazon’s Al-powered product recommendation tool
generates almost a third of its annual sales [73]. Although it is diffi-
cult to obtain quantitative data on the impact of Al on e-commerce,
the details of which are largely considered sensitive trade secrets,
the corresponding machine learning approaches of recommenda-
tion and ranking are active topics of research in the Al community,
powered by an enormous quantity of user data being continuously
gathered through interactions with digital platforms [19, 20, 31].
The rapid expansion of online advertising its direct and indirect
environmental impacts have been emphasized in research papers
and scientific reports over the last years [47, 91]. The contribution
of Al to this expansion is worth considering when measuring the
performance of new algorithms and approaches [28], especially
given the net-zero and emission reduction goals of many Al-driven
companies whose revenue models depend on it [135].

Time rebound effects occur when an innovation changes con-
sumers’ use of their time, which then frees up (or removes) time
for other activities that they carry out. For example, if a vacuum
cleaner reduces the time needed to clean the floors in a house, it
can free up time for leisure activities such as reading or sports. Mea-
suring the sustainability benefits of these time savings is far from
straightforward, because what we do with this newly-freed time
can have negative environmental impacts as well, e.g. if time other-
wise spent doing chores is now spent shopping or traveling, this
can increase one’s overall carbon footprint [15]. Al is undeniably
impacting how time is spent at work and at home: many activities
have already been streamlined using Al over the last decade, such
as Al-enabled navigation that avoids traffic congestion, automated
license plate recognition and tolling on highways, and robotic vacu-
ums. Initial work on the environmental consequences of these shifts
has proposed that Al-enabled automation in household tasks and
in the workplace actually leads to greater resource consumption
and higher negative environmental impacts overall [36]. This con-
tradicts research carried out on Al-assisted navigation specifically,
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which has been shown to reduce emissions by an average of 3.4%,
based on data gathered by Google on users of Google Maps [8].
This discrepancy highlights the difficulty of making far-reaching
claims regarding the sustainability impacts of a given innovation
without considering the spillover effects and behavioral changes
that it may engender more broadly.

Indirect policy effects. In addition to societal and behavioral
forces, there are also indirect geopolitical and policy effects. Inter-
national policy interventions, particularly those aiming to bolster
national self-sufficiency from global supply chains, can provoke
unintended increases in environmental burdens through mineral de-
mand amplification, industrial deregulation, and competitive over-
production. The dynamics of Koomey’s Law, by which the energy
efficiency of computing has historically doubled approximately ev-
ery 1.57 years, can also be affected by geopolitical disputes and trade
wars. If chip sales are restricted, for example, nations have to make
do with less powerful and less energy-efficient semiconductors.
As national strategies to monopolize or re-shore semiconductor
capacity develop, this can further accelerate national rivalries and
result in the replication of systems and further resource-intensive
scaling of model training infrastructure. The United States CHIPS
and Science Act (2022) is one example. This legislation aims to
re-shore semiconductor fabrication. While its primary goal is to
reduce dependency on Chinese manufacturing, it has the potential
to intensify domestic resource demands. Semiconductor fabrication
facilities (known as fabs) impose massive environmental burdens,
consuming large quantities of energy, water and specialized chemi-
cals while generating substantial carbon emissions (Villard, 2015).
The domestic expansion of fabs in the United States shifts rather
than reduces these environmental impacts, potentially introducing
new ecological pressures in regions with water scarcity issues like
Arizona, where several new facilities were planned. Meanwhile
the ongoing resource pressures continue in China and Taiwan.
Moreover, the race to decouple US semiconductor supply chains
from geopolitical adversaries has led to intensified extraction of
rare-earth elements, lithium, cobalt, and high-purity quartz. This
geopolitical reorganization of material flows extends the environ-
mental footprint of Al beyond traditional carbon accounting. China
restricting the export of several rare earth elements has meant that
mines in Ukraine and Australia are already under expanded pres-
sure to meet US demand. The increased competition for critical
minerals has both social and ecological impacts, and risks even
greater environmental harms in conflict-affected regions.

These indirect policy effects risks are further compounded when
environmental deregulation coincides with large-scale investment
in Al-related infrastructure. The Trump administration in 2025
has been marked by a comprehensive rollback of environmental
protections, including a withdrawal from the Paris agreement, sig-
nificantly altering the United States’ approach to climate and en-
ergy policy. Simultaneously, President Trump announced a $500
billion USD investment in Al infrastructure known as Project Star-
gate, which aims to significantly increase the number of very large
(hyperscale) data centers and bypass environmental impact assess-
ments while offering public subsidies. These policy shifts can lock-
in energy and environmental demands that outpace any computa-
tional efficiency gains.
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This decoupling of Al infrastructure from environmental respon-
sibility illustrates a critical rebound mechanism: technical efficiency
improvements, such as high-efficiency datacenter designs or Al
model efficiency optimizations, are insufficient when broader reg-
ulatory and policy conditions incentivize unchecked growth. By
facilitating rapid deployment without ecological constraint, these
conditions create an emissions burden with resource demands that
scale with model proliferation. In such contexts, even the best-case
efficiency improvements under Koomey’s Law may be dwarfed by
the sheer increase in volume of compute infrastructure. Then the
indirect effects of these policies on the environment are no longer
marginal, they become structural. The recent DeepSeek model is
actually an interesting addition to the debate around efficiency and
energy because, on the one hand, it was trained using relatively less
energy and compute compared to previous generations of language
models (due mostly to the export limitations on GPUs to China,
which limited the amount of chips that was available for training
it), but on the other hand, this was only possible by leveraging
synthetic data generated by these models. Also, the model itself is
very large —almost 700B parameters for the R1 model — meaning
that deploying it requires access to multiple GPUs with several hun-
dreds of GB of memory, which is significantly more than smaller
models of a smaller size, which can contribute to more energy use
overall as organizations deploy the model in user-facing applica-
tions. Finally, as detailed in the DeepSeek-R1-Zero report [29], the
model requires much more inference-time computation and energy
than previous approaches due to its reasoning abilities. This results
in the generation of much longer answers to queries detailing the
steps that the model is going through to provide the final response,
which leads to more inference-time compute and energy demands.

3.4 Tracking and Mitigating AI’s Rebound
Effects

The main challenges in measuring and mitigating indirect impacts
and rebound effects are their uncertainty and heterogeneity. While
tracking direct impacts can largely be achieved by monitoring a
finite set of relatively well-defined metrics, such as liters of water
consumed or tons of CO2 emitted, rebound effects by definition en-
compass social, economic, and behavioral impacts across different
areas of society [114]. Realizing effective progress in characterizing
AT’s rebound effects necessitates moving beyond the binary narra-
tive towards more holistic assessment that incorporates a variety of
complementary approaches. We discuss some of these approaches
below.

Qualitative and quantitative research. Starting with the material
rebound effects of digital technologies such as Al it can be tempting
to make comparisons such as the research described in Section 3.1,
which carry out LCA comparisons between e.g. a book and an e-
reader. However, we are currently lacking sufficient methodology
and data that would allow for meaningful comparison of the en-
vironmental impacts of humans versus the same tasks performed
by humans alone or assisted by Al Initial work on this subject
has concluded that “Al systems emit between 130 and 1500 times
less COze per page of text generated compared to human writers,
while Al illustration systems emit between 310 and 2900 times
less COze per image than their human counterparts,” however, the
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authors themselves note that their analyses “do not account for
social impacts such as professional displacement, legality, and re-
bound effects” [128]. More qualitative and multi-faceted analyses
are needed, such as those that take into account aspects like the
length of time that content will actually be useful to readers and
the way in which the data was collected, can help shed light on
the issue, as well as more empirical research to study how human
artists and writers use Al technologies and how that impacts the
environment.

Transparency. A key challenge to tracking AI's economic re-
bound effects stems from the severe scarcity of information regard-
ing the nature and extent of Al’s actual permeation throughout the
economy. The rapid integration of Al into many existing products
and services, combined with vague and often broad definitions of
AlJ, has made it difficult to disentangle Al-influenced growth from
growth that might have occurred regardless. This challenge is in-
tensified by the perception that details on corporate Al model use
represent valuable intellectual property and trade secrets. Gath-
ering more information about specific Al deployment scenarios,
i.e. which Al models are actually being deployed, in which sectors,
what are they being used for in practice, and what are the impacts
of those uses, will become increasingly important as Al becomes
established as a mainstream technology. Connecting data on Al
model resource consumption to corresponding positive or negative
impacts arising from those models is key to understanding trade-
offs and informing decision-making. In the case of induction effects
in particular, establishing baselines across industries, for instance
documenting the environmental impacts of technologies currently
in use, and measuring changes to those baselines as Al is integrated
would enable tracking longitudinal trends. Requiring companies
using Al in applications such as targeted advertising to indicate this
usage, as well as what data was used to choose an ad for a specific
product, can help users better understand why they are receiving
ads and contribute towards more mindful consumption [26, 79].

Regulation. While focusing on efficiency alone has largely been
sufficient in the past to curb the environmental impacts of rising
compute [75], given the astronomical rise in computational (and
corresponding energy and natural) resources needed to power Al
services resulting from generative Al, complementary efforts are
needed to address these impacts [108]. Historically, economic poli-
cies that increase the cost of these resources have been shown to
help control certain rebound effects [39]. Initiatives such as energy
efficiency certifications (e.g. the U.S EPA’s Energy Star certifica-
tion, Energy Labels in the EU) can also reduce resource use by
incentivizing the sales and production of more efficient tools and
systems, successful for increasing energy efficiency for household
appliances [27]. Related proposals have been introduced for AI mod-
els [38, 71], although the lack of centralized authority for regulating
Al (either at a national or international level) has made it difficult
so far to operationalize such a proposal. Regulations could also
serve an important role in mandating reporting of the necessary
data described above, e.g. requiring disclosure of the usage of Al
for environmentally harmful applications such as oil and gas ex-
ploration, which although highly relevant, is not typically reflected
in corporate Environment and Sustainability Governance (ESG)
documents.
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Efficient devices and distributed compute. Resource-efficient com-
puting devices that require less natural resources (energy, water,
raw materials) to build and use can be seen as an obvious gain in
terms of environmental impacts, and different hardware platforms
are being developed towards this end as an alternative to GPUs and
CPUs, which represent the current status quo of Al computing hard-
ware [61, 62]. It is worth noting that there is typically a trade-off
between resource efficiency and generality in terms of the compu-
tational capabilities of the hardware: substantial efficiency gains
typically require the hardware to be correspondingly specialized to
certain types of computation, such as a specific family of Al models,
which can accelerate indirect effects via lock-in, increasing depen-
dence on a narrow set of vendors or products. New approaches
to distributed and decentralized computation, in which AI model
workloads can be distributed across machines over wide distances
rather than running within a single computing cluster or datacen-
ter, can also help distribute environmental burden geographically
in terms of resource demand and local impacts. Examples include
fully decentralized training [59] or redirecting training processes
depending on which cloud region has the lowest carbon intensity
at a given time of day [30]. Above and beyond sustainability con-
siderations, adopting more flexible AT hardware and algorithms can
help lower the barrier to entry into the field of Al and push back
against industry monopolization of computational resources, and
corresponding power imbalance that this creates [1, 2].

4 Discussion

In the context of climate change, artificial intelligence has emerged
as a highly polarizing technology. On the one hand, it is champi-
oned as a driver of efficiency that could potentially invent new
solutions to the climate crisis or reinvent old ones [5, 21, 99]; on
the other hand, it is criticized for its steeply increasing resource
demands and carbon footprint [68, 120, 134]. This debate overlooks
a significant reality: we still do not have a comprehensive picture
of AT’s current environmental impacts on everything from eco-
nomic systems to individual behaviors. Consequently, the Al field
risks simplifying the nuances that must be understood if Al is to
be responsibly integrated into environmental policy and practice
without exacerbating harms. A more accurate assessment of AI’s
environmental outcomes would include a wider range of factors
spanning data center operations, supply chains, hardware lifecy-
cles, social behaviors, business incentives, policy commitments, and
institutional practices.

As mentioned in Section 3, one under-explored dimension in
these debates involves the indirect or rebound effects that Al can
generate. While much attention has been given to Al improving
productivity and resource efficiency, these gains can result in higher
overall consumption due to effects such as Jevons Paradox. This
paradox can manifest in several ways: for instance, an Al-driven
logistics system might reduce delivery times and fuel usage per
vehicle, yet simultaneously encourage more frequent online orders,
thus elevating total miles driven; Al-driven targeted advertising
can help us more easily find the products that we need based on
our clicks and searches, but also push us to make more superflu-
ous purchases. Such systemic shifts in behavior challenge linear
expectations that efficiency improvements alone will drive down
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emissions. Instead, they underscore the need for a detailed, interdis-
ciplinary approach that links Al deployment to broader assessments
of environmental, social, and economic feedback loops.

Applying Jevons’ Paradox to technologies like AI has notable
conceptual and empirical limitations due to the complexity inher-
ent in technological development and diffusion [101, 113]. While
Jevons’ Paradox anticipates increases in resource consumption fol-
lowing efficiency improvements, its explanatory power diminishes
within the broader systemic contexts of widespread Al diffusion.
Sorrell [2008] critiques Jevons’ paradox for oversimplifying complex
causal relationships among efficiency gains, economic expansion,
and individual behavioral responses. This is particularly relevant
given Al systems have many interdependencies across diverse eco-
nomic sectors. Addressing these multifaceted rebound effects re-
quires shifting from simplistic causal assumptions toward more
integrated sociotechnical analyses that can include a range of ap-
proaches, from detailed empirical studies of technology adoption,
user behavior, policy factors, and evolving market dynamics. That
would also suggest that truly effective policy responses for Al sus-
tainability would need to combine technological efficiency with
institutional reforms and incentive structures specifically designed
to decouple model development from unsustainable resource con-
sumption. This approach would not only recognize the conditional
validity of Jevons’ Paradox but actively embed sustainability within
Al development.

Although the research community has taken initial steps toward
quantifying AI’s carbon footprint and water usage, these efforts
often focus on direct resource consumption during model training
and inference. While such measurements are essential, they are
only a partial view. Global supply chains—encompassing the extrac-
tion of raw materials, the manufacturing of semiconductor chips,
and the disposal of electronic waste—also contribute substantially
to AI's environmental cost, yet these distributed impacts remain
notoriously difficult to track [24, 83]. Companies and researchers
commonly disclose only a narrow range of environmental met-
rics. This lack of standardized reporting impedes a full lifecycle
assessment and perpetuates an environment in which the indirect
burdens of Al remain opaque [72].

Another critical factor is the current market-driven context
in which Al operates. At present, the most prominent Al break-
throughs, particularly large language models, function within an
economic system that rewards rapid growth and ever-increasing
computational power [4, 125]. The result is that changing Al de-
velopment to align with the climate agenda is only possible if it
supports extant business incentives—or at least does not limit them.
Proposals that transcend profit-driven imperatives, such as limit-
ing the scale of Al (so-called “digital degrowth” [104]) or policy
mechanisms such as a carbon tax on data center usage, remain
on the fringes of the field. Similarly, few stakeholders are calling
for enforced accountability on Al companies to internalize the
costs of the environmental damage they cause, including resource
depletion, substantial energy consumption, or contributions to e-
waste streams. As a result, many of the purported “solutions” to
climate challenges via Al remain tethered to profit-driven impera-
tives rather than broader systemic transformations. This structural
constraint significantly narrows the scope of AI's potential as a
climate intervention, often leaving only those applications that
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promise quick returns or minimal disruptions to existing market
logics.

This reality highlights a structural barrier: if Al solutions to cli-
mate change do not yield near-term financial returns, they may
struggle to gain traction in an industry propelled by venture capital,
quarterly earnings, and shareholder expectations. Consequently,
many of the touted climate positive Al applications, like energy grid
optimization or automated water management, risk being overshad-
owed by more lucrative pursuits that do not necessarily mitigate
environmental harm. The underlying problem, then, is not just
one of measuring or quantifying impacts more thoroughly within
existing market logics — this simply perpetuates Jevons’ paradox.
Instead, what is required is a more substantial reimagining of the
relationship between Al technologies, business objectives, and eco-
logical imperatives [100]. Genuinely climate-aligned Al strategies
might require public policy frameworks that penalize unsustainable
practices and reward genuinely carbon-negative deployments of
Al, and business models that do not hinge on perpetual growth, in
order to ensure that increased Al efficiency does not simply spur
more consumption.

Yet, as mentioned in Section 3.4, for any of these steps toward
meaningful change to materialize, the industry must adopt a far
more transparent stance on all the environmental impacts of Al
systems and take accountability for the far-reaching impacts of the
technologies that it develops and deploys. At present, the scant
public information on the carbon footprint of large-scale AI models
is frequently derived from academic estimates or limited corporate
disclosures rather than comprehensive, standardized reporting. If
Al companies truly want to position their technologies as part of
the climate solution, they must be forthcoming with granular data
on their energy sources, resource consumption, hardware lifecycles,
and the end-of-life management of electronic components. In other
words, the foundation of any net-positive Al contribution to the
environment is a baseline of reliable, detailed data, which has yet to
be made widely available. Without this level of transparency, poli-
cymaking bodies, researchers, and the public at large are left with
partial insights at best, which undermines the capacity to assess
AT’s environmental impacts effectively, to design incentives that
reward lower-impact Al development, and for individuals to make
informed choices with respect to their use of these technologies.
Ultimately, the Al field is responsible for knowing the impacts of
its own products, and it cannot do so without better data. This in-
formation is crucial for performing accurate lifecycle assessments
that capture both direct and indirect consequences. Absent such
data, the conversation around AI’s climate benefits risks devolving
into corporate branding exercises rather than a genuine reckoning
with environmental and social responsibilities.

5 Conclusion

This paper argues that the Al field needs to adopt a more detailed
and nuanced approach to framing, articulating, and addressing AI's
environmental impacts in order to avoid unhelpful polarization.
This requires including ATl’s direct impacts—mineral supply chain
studies, carbon emissions of training large-scale models, energy
and water consumption, and e-waste from hardware—as well as
mapping the ways Al innovations reshape economic structures and
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societal practices that, in turn, drive increased resource usage. Such
a comprehensive perspective will empower researchers, policymak-
ers, and industry stakeholders to devise strategies that prevent
“tech-solutionism” from overshadowing the urgent need for sys-
temic change. Greater transparency in reporting energy usage, more
robust lifecycle assessment tools, and meaningful industry-wide
enforceable standards are examples that would foster much-needed
progress.

Ultimately, what is at stake is clear: There is a scientific consen-
sus that the dangers of climate change are extreme, and the effects
are already unfolding globally. The need to limit global warming to
below 1.5°C underscores the need for transformative change across
sectors, and the technology sector is no exception. If Al is deployed
without adequate consideration of its direct and indirect effects, it
has the potential to deepen inequalities, accelerate resource deple-
tion, and exacerbate the very climate problems it hopes to address.
Conversely, if approached with rigorous assessment, transparent
reporting, and supportive policy frameworks, Al could serve as a
helpful tool in climate adaptation, environmental monitoring, and
sustainable planning. Yet we cannot simply hope for the best out-
come. The onus is on the Al industry to ensure technology does not
contribute to the problem before producing any future solutions.
This requires reckoning with AI’s actual impacts, both direct and
indirect, measured comprehensively and contextualized socially,
economically, and environmentally.
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