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Abstract
Federated Learning (FL) enables collaborative model training while
preserving participating clients’ local data privacy. However, the
diverse data distributions across different clients can exacerbate fair-
ness issues, as biases inherent in client data may propagate across
the federation. Although various approaches have been proposed
to enhance fairness in FL, they typically focus on mitigating the
bias of a single binary-sensitive attribute. This narrow focus often
overlooks the complexity introduced by clients with conflicting
or diverse fairness objectives. Such clients may contribute to the
federation without experiencing any improvement in their own
model’s performance or fairness regarding their specific sensitive
attributes. In this paper, we compare three approaches to mitigate
model unfairness in scenarios where clients have differing and po-
tentially conflicting fairness requirements. By analysing disparities
across sensitive attributes and model performance, we investigate
the conditions under which clients benefit from federation participa-
tion. Our findings emphasise the importance of aligning federation
objectives with diverse client needs to enhance participation and
equitable outcomes in FL settings.

CCS Concepts
• Security and privacy→ Social aspects of security and pri-
vacy; • Computing methodologies→ Distributed computing
methodologies.
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1 Introduction
The widespread adoption of Machine Learning (ML) across various
fields not only required the introduction of numerous Artificial
Intelligence (AI) regulations [6, 10, 19, 24, 32] but also emphasised
the focus on Responsible AI practices. In recent years, we witnessed
a growing interest in developing explainable models [7], protecting
users’ privacy [31], and preventing unfair model behavior [28].

FL [27] was introduced to protect user privacy and enable col-
laborative ML model training. While FL avoids sharing raw data
with a central training server, it remains vulnerable to privacy at-
tacks [21, 23, 36] and is often combined with privacy-enhancing
technologies such as Differential Privacy to mitigate these risks [29].
To prevent unfair model behaviour, numerous approaches were
proposed to train fair FL models [33], mainly inspired by tradi-
tional centralised learning techniques. However, the training of fair
models in FL settings presents unique challenges due to the hetero-
geneity of the participating clients and the inherent complexities of
learning in a decentralised environment. Heterogeneity can include
that clients from different regions hold data biased toward different
groups, define fairness differently, and have varying motivations
for participating in FL. They may also prioritise different sensitive
attributes, i.e., features of an individual such as gender, race, or
age, which are usually linked to biases and societal inequalities and
require consideration to ensure fairness.

Existing approaches to training fair FL models often assume a
single binary sensitive attribute that applies uniformly to all partic-
ipants. Consequently, the fairness objectives addressed and eval-
uated may not align with the diverse fairness needs of all clients.
Some clients might already achieve fairness for the chosen sen-
sitive attribute, but could face significant unfairness for another,
unaddressed attribute.

Recent research showed that bias can be propagated across the
federation [8], resulting in models that are less fair for a part of
the clients than if they had trained a model independently on their
data. When clients notice that contributing their resources and data
to a federation does not improve their locally trained model, their
motivation to participate in further FL training decreases. From
their perspectives, FL has failed to achieve the desired and expected
outcome. This individual perspective could be changed to a more
global one if these clients had access to all participants’ data and
could assess the success globally. For instance, in an FL setting
with 20 clients where 15 reports better models than before, the 5
clients who see no improvements could view their contribution as
successful if they knew it helped improve others’ models. However,
this is purely hypothetical since detailed statistics of each client
are rarely shared across the federation or made publicly accessible.
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Figure 1: The fairness measured using Demographic Dispar-
ity on the ACS Income dataset. If we consider SEX and MAR as
two separate sensitive attributes, we can observe that some
states are more biased with respect to one attribute than to
the other.

Therefore, clients taking part in FL expect an individual benefit.
More specifically, they expect to train a better model by collabo-
rating with others rather than training alone. Here, each client’s
definition of a “better model” can vary strongly among clients in an
FL setting. This is the reason why, usually, FL objectives are defined
before taking part in the federation to convince clients to join it.
While these objectives have the potential to include a wide range
of things, they are mostly focused on optimising accuracy and/or
other metrics such as fairness. Specifically for fairness, in general,
a fairness metric is incorporated into the FL objective for one or
more sensitive attributes.

Ideally, defining these objectives can help to find clients willing
to join the FL setting in the hope of benefiting from it. However,
this is not always achieved as participation in federations can be
compulsory for some or all clients for political, socioeconomic,
or other reasons. When fairness objectives are involved, client
heterogeneity presents two main challenges:

(1) Clients can have data that is unfair toward different values
of the same sensitive attribute.

(2) Clients can possess data that is unfair to other sensitive at-
tributes than the one the FL setting is focused on mitigating.

The first problem can appear when training a race-fair FL model
on district hospitals, where clients may hold more data of one race
depending on their location. This might be problematic in an FL
scenario where clients could question the benefit of being part of the
federation if the outcome is a model that is unfair toward their data.
This scenario can happen if the majority of clients participating
have data biased toward one sensitive group (e.g., black people) and
therefore dominate the fairness objective, while only a minority of
clients have data biased toward another group. In this setting, the
competing interests of the different clients could even make the
optimisation of fairness with respect to race impossible.

The second problem can occur if a fraction of clients holds data
that is fair toward the sensitive attribute defined by the federation’s
objective but biased toward another attribute. This can emerge
because of the data collection process, implemented laws, regula-
tions, and economic or social factors. To show that this problem
occurs, Figure 1 depicts how the Demographic Disparity (more
details about this metric in Section 2.2) for the sensitive attributes
SEX and MAR are distributed across states using the ACS Income
dataset [13] (see Section 4.1).

In this paper, we focus on the second problem and simulate an FL
training scenario where clients have conflicting fairness objectives
to evaluate when and if joining a federation is more beneficial than
local model training. Additionally, we compare the FL approach to a
cluster-based method that groups clients according to their fairness
objectives before executing the FL training to show how such an
approach can better serve client needs compared to standard FL or
purely local training.

Our key contributions are:
• A comprehensive comparison of three popular unfairness
mitigation techniques for FL, evaluating their performance
in scenarios with conflicting fairness objectives;
• A simulation of these scenarios using two popular tabular
datasets to assess practical outcomes;
• A comparison of the standard FL approach with a cluster-
based approach, to analyse if grouping clients with similar
fairness preferences before training can lead to improved
fairness outcomes for individual clients.

2 Background
2.1 Federated Learning
FL [27] is a collaborative learning approach introduced by Google
in 2016, allowing 𝐾 entities, usually called clients, to train a shared
ML model without exposing their private training dataset 𝐷𝑘 to
external entities. Based on the number of clients 𝐾 , FL can be cate-
gorised into two scenarios: cross-silo and cross-device [34]. In the
cross-device scenario, 𝐾 can increase to millions, clients possess
a few samples, and their availability is limited to specific circum-
stances. In contrast, in the cross-silo scenario, 𝐾 ranges from tens
to hundreds, clients have more data available, and they are always
available during training. The clients involved in federated training
can be institutions, such as hospitals in a cross-silo context, and
devices like smartphones or edge devices in a cross-device context.
This paper focuses on a cross-silo scenario, where an organisation
holds data about multiple individuals but would still like to treat
them fairly with regard to some group fairness definitions. We note
that, compared to a cross-device setting, there is a disconnect here
between the client (i.e. silo, organisation) and the individuals repre-
sented in the data. This further motivates our critical investigation
of the cross-silo setting, as it highlights the risk of a “trickle-down
effect”, where the potential harms of the organization’s decisions
about whether to join a federation will ultimately impact (groups of)
individuals. Yet, our analysis can easily be extended to cross-device
settings.

A second distinction for FL is between Horizontal and Vertical FL
settings [34], which defines how data is distributed across clients.
In Horizontal FL, clients hold datasets within the same feature
space but with completely different samples. In Vertical FL, instead,
clients share the same ID space (e.g., same users), but the feature
space is different. For our work here, we assume a Horizontal FL
scenario. The training of an FL model is usually orchestrated by
a central server 𝑆 that is responsible for the selection of a subset
𝜒 of available clients in each training round 𝑟 ∈ [0, 𝑅] as well as
the aggregation of the models trained by them. At the initial round
𝑟 = 0, the server selects a subset 𝜒 of clients and shares a model
𝜃𝑟 initialised with random weights with these selected clients. The
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following training procedure depends on the chosen aggregation
algorithm. With Federated-SGD (FedSGD) [27], clients receiving 𝜃𝑟
perform a single local training step. During this single step, each
client computes the gradient 𝑔𝑘 = ∇L(𝜃𝑟 , 𝑏𝑖 ) of the model 𝜃𝑟 on
the batch 𝑏𝑖 from its local dataset 𝐷𝑘 and shares 𝑔𝑘 with the server.
The server then aggregates the gradients and updates the global
model 𝜃𝑟+1 ← 𝜃𝑟 − 𝜂

∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑔𝑘 where 𝜂 is a fixed learning rate

and 𝑛 =
∑𝐾
𝑘=1 𝑛𝑘 . This aggregation algorithm entails high commu-

nication costs as gradients are exchanged after each local update.
This problem can be solved with a more efficient algorithm called
Federated Average (FedAvg) [27]. In this case, the clients perform
a model update 𝜃𝑘 ← 𝜃𝑘 − 𝜂∇L(𝜃𝑘 , 𝑏𝑖 ) for 𝐸 local epochs before
sharing the update with the server. The server aggregates these
final updates to compute the global model 𝜃𝑟+1 ←

∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝜃

𝑘 . This
aggregation reduces communication overhead while maintaining
model performance, making FedAvg the preferred choice in many
FL applications.

2.2 Group Fairness in Machine Learning
Group Fairness in MLmodels refers to their ability to predict an out-
comewithout exhibiting a bias toward a specific demographic group.
Researchers proposed several different metrics to quantify amodel’s
fairness in recent years, including Equality of Opportunity [20],
Equalized Odds [20], Predictive Parity [9], and Demographic Par-
ity [16]. Which metric or metrics to choose is very specific to the
application, as each metric offers a different interpretation and may
conflict with others. In this paper, we rely on the Demographic
Parity [16], a popular and widely used metric employed in the three
approaches we compare.

Definition 2.1. Demographic Parity is a fairness metric based on
the principle of Independence [3], which requires that the likeli-
hood of a particular prediction outcome must not depend on the
membership in a sensitive group. Formally, Demographic Parity
can be expressed as:

P(𝑌 = 𝑦 | 𝑍 = 𝑧) = P(𝑌 = 𝑦 | 𝑍 ≠ 𝑧) (1)

where𝑦 is one of the possible targets predicted by the model and 𝑧 is
one of the possible values of the sensitive attribute. For example, the
sensitive group could correspond to the gender of the individuals in
the dataset. The closer the two probabilities are, the fairer the model
will be. The approaches compared in this paper do not directly
report the Demographic Parity of the different groups, instead, they
evaluate the maximum difference between the Demographic Parity
of the different sensitive groups. More specifically, they use the
definition of Demographic Disparity.

Definition 2.2. Demographic Disparity Γ(𝑦, 𝑧) is the difference
between the probability of predicting class 𝑦 for samples with sen-
sitive value 𝑧 and the probability of predicting class 𝑦 for samples
with sensitive value different than 𝑧:

Γ(𝑦, 𝑧) = P(𝑌 = 𝑦 | 𝑍 = 𝑧) − P(𝑌 = 𝑦 | 𝑍 ≠ 𝑧) (2)

The closer the Demographic Disparity is to 0, the less biased the
model is in favour of one group over another. Notably, the ideal
scenario for Demographic Parity occurs in a completely random
model, where predictions are made uniformly at random. In such a

case, the differences between the probabilities for different groups
approach ∼ 0, indicating no bias.

2.3 Fairness in Federated Learning
Fairness in FL can refer to many principles such as client fairness,
selection fairness, contribution fairness, individual fairness, and group
fairness [33]. Client Fairness refers to the principle that the perfor-
mance of an FL model is distributed evenly across the participating
clients. Selection Fairness focuses on choosing participants for FL
rounds without bias, while Contribution Fairness ensures clients get
rewarded proportionally to their contribution to the global model.
While these fairness principles are specific to FL settings, individ-
ual and group fairness also exist in centralised learning settings.
This work focuses specifically on Group Fairness in FL. Recent
approaches have attempted to integrate group fairness into FL set-
tings 1. Here, many challenges arise due to data heterogeneity, re-
stricted information about sensitive attributes, resource constraints,
or client participation. Specifically, the limited information about
sensitive data in each client’s dataset leads to several concerns
about fairness, such as how to integrate intersectional fairness into
FL settings.

3 Related Work
Evaluating a client’s benefit from participating in FL training is cru-
cial for analysing model performances on individual client data and
not only on a global test set [14, 35]. While performance metrics
typically include accuracy, F1-score, and similar measures, to our
knowledge, no prior work has analysed the benefits of FL partic-
ipation from each client’s fairness perspective. However, several
relevant works inspired and informed the analysis conducted in
our paper. Firstly, researchers proved that FL is highly sensitive
to bias propagation when the sensitive attribute is included as an
input feature. This finding was first highlighted in a preliminary
study [17] and then explored in depth in [8]. In particular, in [8]
the authors proved a correlation between the bias encoded in each
client’s data and the fairness benefit gained from joining FL training.
Clients with an initially greater bias tend to obtain fairer models
through FL, while clients with less initial bias often receive more
biased models. This is due to bias propagation, where even a small
subgroup of biased clients can influence the overall model fairness.
Our work builds on the statement that FL participants can signifi-
cantly influence the final model properties and that these properties
are perceived differently by each client. However, while [8] relies
on FedAvg as an FL algorithm, we focus on FL methods enhancing
fairness for sensitive attributes. Also, we do not include any sensi-
tive attributes in our feature input space and restrict our dataset
to at most 20,000 data points per client, differently from the 3,000
considered in [8]. Furthermore, we focus on the individual’s benefit
of taking part in a federation with defined objectives.

Secondly, [33] highlighted that current research on fairness in
FL lacks contributions related to intersectional fairness. Intersec-
tional fairness describes forms of discrimination and societal effects
happening when different features intersect with each other [12].
This analysis partially inspired our paper as we consider scenarios
in which, in centralized learning, an intersectionally fair model
1We refer the reader to [33] for a broad Group Fairness in FL literature overview
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would be a near solution. As an intersectional fair FL method does
not exist yet [33], our work aims to provide insights into how FL
settings respond to clients with multiple fairness objectives until
research advances in this direction.

4 Experimental Setting
To simulate an FL setting where clients in the federation have
conflicting fairness objectives, we preprocessed the ACS Income
and ACS Employment [13] dataset. Furthermore, we evaluate three
different fair FL methods: PUFFLE [11], Reweighing [1], and Fed-
MinMax [30]. Details on preprocessing, our choice of sensitive
attributes, the applied methods, and our local baseline models are
described in this section.

4.1 Datasets
We conduct experiments on two popular tabular datasets: ACS
Income and ACS Employment [13]. The American Community
Survey (ACS) collected data for these two datasets across all 50
states of the USA and Puerto Rico between 2014 and 2018. The
natural division of the dataset into 51 entities is particularly useful
for FL research because it allows treating each entity as a separate
client, exploiting the natural non-iid distribution of the samples. The
ACS Income dataset contains 1,664,500 samples, the task involves
predicting if an individual’s income is above 50, 000 or not. The ACS
Employment dataset contains 3,236,107 samples, the task involves
predicting an individual’s employment status.

4.2 Preprocessing
As explained in Section 1, this paper aims to analyse if and how
the different clients benefit from being involved in a federation in
terms of model utility and fairness. Therefore, we require a data dis-
tribution where different groups of clients exhibit distinct fairness
concerns. Specifically, we want half of the clients to demonstrate
a bias toward a particular sensitive attribute and aim to mitigate
the model’s unfairness with respect to this attribute. Meanwhile,
the other half of the clients should show a bias toward a different
sensitive attribute and seek to reduce model unfairness related to
this one. To simulate this scenario, we preprocess the two datasets
in the following way:

• We consider the same two sensitive attributes for both datasets:
SEX, which indicates the gender of the different samples, and
MAR, which indicates their marital status. In both datasets,
SEX is already a binary attribute. Instead, MAR can have the
following possible values: “Married”, “Widowed”, “Divorced”,
“Separated” and “Never married”. To have datasets compat-
ible with all applied unfairness mitigation approaches, we
reduce MAR to a binary attribute with two values: “Married”
and “Not Married”. In particular, we map “Widowed”, “Di-
vorced”, “Separated” and “Never married” to “Not married”.
• As participants in our setting, we select 20 of the 51 clients
available in the dataset to reduce the computational power
required to perform our tests across the various methods and
settings under consideration. For the same reason, we limit
the maximum number of training samples for each client to
20,000.

Figure 2: Demographic Parity computed on the ACS Income
dataset of the 20 clients selected in the FL computation. The
first 10 clients (in blue) are unfair w.r.t. the SEX sensitive
attribute but low MAR disparity. The last 10 clients (in red) are
unfair toward MAR with ∼ 0 SEX disparity.

• A subgroup of the clients was already unfair toward the
two sensitive attributes considered in this paper. For the
other participants, we artificially made the clients unfair
toward MAR and SEX or exacerbated the unfairness. To this
end, we removed samples from 10 clients’ datasets to increase
bias toward SEX, and from the other 10 clients’ datasets to
increase bias toward MAR. We report the distribution of the
Demographic Disparity computed on the training dataset
of the 20 clients for the ACS Income dataset in Figure 2. A
corresponding figure for ACS Employment is reported in
Figure 10 in Appendix B.
• We exclude from the feature input space both sensitive at-
tributes SEX and MAR, as well as another sensitive attribute
called RAC1P which encodes the race.

We published the preprocessed dataset used throughout the
experiments in our GitHub repository 2.

4.3 Fair FL Methods
4.3.1 FedMinMax. FedMinMax [30] is based on theminimax group
fairness criterion [25], which aims to optimise a model by max-
imising the prediction performance of the worst-performing de-
mographic group while avoiding unnecessary degradation in the
performance of other demographic groups.

To archive this in a FL scenario, FedMinMax [30] solves the
following optimization problem:

min
𝜃 ∈Θ

max
𝜇∈Δ|𝑍 |−1≥𝜖

∑︁
𝑧∈𝑍

𝜇𝑧𝑟𝑧 (𝜃 ) . (3)

In Equation 3, the objective is in parallel minimised for optimising
the model parameters 𝜃 and maximised to optimise the weighting
coefficients 𝜇. The summation is taken over the estimated empir-
ical risk 𝑟𝑧 for each value 𝑧 ∈ 𝑍 of the sensitive attribute. Since
the clients only have access to their local finite datasets, rather
than to the complete data distribution, the risk is estimated in a
weighted way. Therefore, Equation 3 focuses on minimising the
risk for the worst-performing demographic group. This approach
can be extended to scenarios where not all clients participate in
every round of training by estimating the risk based on only the
available participants. Additionally, the method allows for different
distributions of the demographic groups among the clients in the FL

2https://github.com/xheilmann/FairnessBenefitsFL
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setting as well as different fairness metrics. To evaluate FedMinMax,
we adapted the source code 3 for Demographic Parity.

4.3.2 PUFFLE. PUFFLE [11] is a recently proposed in-process
method that employs Differential Privacy [15] and a Regularization
approach [22] to protect clients’ privacy while reducing model un-
fairness measured with Demographic Parity. The clients execute
the unfairness mitigation process, which is based on regularization.
When the server selects a client in an FL round, it starts the training
of the model as in classic FL. However, given a batch of data, the
clients not only compute the gradient with respect to the model
output but also to the model’s unfairness measured on the same
batch. This allows the incorporation of an additional regularization
term in the model update that mitigates the unfairness. The two
gradients are summed and weighted using a hyperparameter 𝜆
indicating the importance of the model’s utility and its unfairness.
Choosing a 𝜆 ≃ 1would lead to a perfectly fair model with accuracy
close to 0.5. On the contrary, a 𝜆 ≃ 0 would optimise the model
utility without caring about the model’s unfairness. PUFFLE can
be used with a tunable and fixed 𝜆. In a classic FL scenario, which
does not involve distribution shifts during the training, tunable and
fixed 𝜆 guarantee similar results. Instead, when distribution shifts
happen during the training, the tunable outperforms the fixed 𝜆.
Since we do not consider the problem of distribution shift in this
paper, we use PUFFLE with fixed 𝜆 and without the differential
privacy mechanism, which is outside the scope of this paper. To
evaluate PUFFLE, we used the source code provided here 4.

4.3.3 Reweighing Approach. Reweighing is a preprocessing ap-
proach to reduce the unfairness of models trained with FL [1]. This
approach involves the computation of weights that are assigned to
the training dataset samples. The weights depend on the composi-
tion of the datasets. The authors proposed two possible solutions to
compute the weights: Local and Global Reweighing. In the Global
Reweighing approach, the clients involved in the computation cal-
culate a set of statistics𝐶𝑘 (𝑧,𝑦) regarding the local training dataset
𝐷𝑘 and true labels 𝑌 , which they then share with the central server.

𝐶𝑘 (𝑧,𝑦) = | (X ∈ 𝐷𝑘 |𝑍 = 𝑧) ∧ (𝑌 = 𝑦) | ∀𝑧 ∈ 𝑍,𝑦 ∈ 𝑌 (4)

The server is responsible for the aggregation of all the statistics
received by the clients and for the computation of the weights
𝑊𝑘 (𝑧,𝑦). At the end of this process, the server holds a weight for
each possible pair (𝑧,𝑦). These weights are then applied during
training to weigh the importance of the prediction mistakes made
for the different groups (𝑧,𝑦).

𝑊𝑘 (𝑧,𝑦) =
∑
𝑘,𝑦∈𝑌 𝐶𝑘 (𝑧,𝑦) ∗

∑
𝑘,𝑧∈𝑍 𝐶𝑘 (𝑧,𝑦

𝐶𝑘 (𝑧,𝑦)
∑
𝑘,𝑧∈𝑍,𝑦∈𝑌 𝐶𝑘 (𝑧,𝑦)

(5)

The alternative solution proposed in the paper is Local Reweigh-
ing. In this case, the clients compute the weights directly on their
training dataset without sharing any information with the server.
This means that each client has a different set of weights. In this
paper, we report the results obtained with Local Reweighing. We
implemented Reweighing with the AI Fairness 360 library [4] based
on the guidance provided in [1].
3FedMinMax GitHub repository: https://github.com/oscardilley/federated-fairness
4PUFFLE GitHub repository: https://github.com/lucacorbucci/PUFFLE

4.4 Simulating FL
We perform our experiments in a cross-silo FL scenario. To simulate
this environment, each client divides its dataset into a train and
a test set. We keep this split of the dataset fixed during all the
experiments for all considered settings. During the hyperparameter
tuning phase, the clients divide the training set into a train and
a validation set to perform proper hyperparameter tuning. We
simulate the FL scenario using the popular Flower Framework [5],
selecting all 20 clients to train the model in each FL round. The
metrics reported in the paper are computed by aggregating the
results of the metrics computed by the participating clients on their
test sets. For this evaluation, the model trained by the clients on
their local training dataset and the best hyperparameters found
in the hyperparameter tuning phase are used (see Appendix A for
more details about the hyperparameter tuning).

4.5 Local Training
To evaluate if joining the federation and training a collective model
with FL benefits the different clients, we trained 20 Logistic Regres-
sion models [26] (one for each client involved in the FL training)
on each client’s local data. To ensure consistency when compar-
ing with the FL models, each client holds the same train set and
test set split as in the FL settings. Additionally, we train one local
model while mitigating bias. In this optimisation, we mitigate the
unfairness of each client with respect to one sensitive attribute that
shows the highest disparity in the baseline model. For instance, if
we consider Figure 2, the first client, “UT” has a higher disparity for
the SEX attribute compared to MAR, so the fair model is trained to
mitigate the unfairness specifically for the SEX attribute. Tomitigate
the unfairness, we apply the Exponentiated Gradient Reduction
method [2] implemented in the AI Fairness 360 library [4].

5 Empirical Analysis
To evaluate the benefits of participating in fair FL settings, we con-
duct an extensive experimental analysis with the two described
datasets and three unfairness mitigation methods for FL (FedMin-
Max [30], PUFFLE [11], and Reweighing [1]). We compare these
methods against local models and a clustered FL approach in which
clients are grouped based on their fairness objectives. We measure
the accuracy and group fairness, operationalised as demographic
disparity, as in Equation 2. Specifically, the reported demographic
disparity is max

𝑦∈𝑌,𝑧∈𝑍 Γ(𝑦, 𝑧). This allows us to understand the
benefit of being in a federation in terms of bias mitigation and
accuracy.

The following research questions are the basis for our analysis:

Q1: In which situations is it beneficial for clients to join a feder-
ation?

Q2: Do clients benefit from participating in a federation that
does not align with their individual objectives?

Q3: How do clients perform in fairness-aligned clusters where
all participants share the same objectives, compared to their
performance in an FL scenario focused on a single objective?
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Figure 3: Income Dataset: Difference in disparities w.r.t. SEX sensitive attribute and MAR sensitive attribute between the baseline
local model without bias mitigation (one model for each client) and four different fairness mitigation strategies (local fair
model, PUFFLE, Reweighing and FedMinMax)

In this section, we analyse our findings reporting the results
obtained using the ACS Income dataset [13], comparable results
using the ACS Employment dataset are reported in Appendix C 5.

5.1 Benefits and Harms of the Federation
Our experiments reveal a consistent pattern regardingwhich groups
or clients benefit from participating in fair FL. Figure 3 compares the
local baseline models (trained without any fairness interventions
on the local clients’ training data) against four scenarios for the
ACS income dataset: 1) A local fair baseline, 2) FL with PUFFLE, 3)
FL with Reweighing, and 4) FL with FedMinMax. Clients showing
improvements in these settings are highlighted in the figure with
a grey shadow: for example, clients from “ND” to “RI” in the first
plot of the first row of Figure 3 show a benefit in terms of disparity
reduction when using the local model with unfairness mitigation
compared to the baseline without any mitigation.

Notably, clients with data unfair toward the SEX attribute con-
sistently show a reduction in disparity for SEX across all methods
and all fairness interventions (first row of Figure 3). These clients,
consistently ranked at the top of the plot, demonstrate the greatest
benefits. A similar trend emerged for clients facing unfairness to-
ward the MAR attribute. For this group, clients are generally ranked
lower in terms of disparity reduction for MAR compared to thosewith
SEX-related unfairness (second row in Figure 3). We also observe
that, even compared to a baseline with no intervention, joining a

5Our code is available at https://github.com/xheilmann/FairnessBenefitsFL

bias-mitigating federation negatively impacts demographic parity
if the chosen attribute for intervention is not aligned with the local-
level requirements. In the algorithms employed in Figure 3, the
between-group disparity often gets worse if a client had significant
statistical disparity w.r.t. SEX but the federation intervened onMAR,
or vice versa. Furthermore, it is important to note that any benefits
of participating in a federation are primarily limited to disparity
reduction. We observe only very few improvements in terms of ac-
curacy, which provides additional evidence for a trade-off between
fairness and accuracy [18, 28] (see Figure 11 in Appendix C). For the
ACS employment dataset, we notice similar results for individual
client rankings as well as client benefits. However, a larger propor-
tion of clients benefit overall. Detailed results for this dataset are
reported in Appendix C.1.

When comparing local fair models to fair FL settings, the con-
sistency highlighted in the previous scenario emerges even more
at the level of individual clients, as shown in Figure 4. The state
“VT” shows a consistent benefit across all five methods in the first
row. Additionally, “WV” benefits in four out of five methods and is
ranked highly in the fifth. In the second row, states such as “UT”,
“SD”, “VT”, and “WY” show a consistent benefit across all methods.
Interestingly, when using the FedMinMax method, the group “UT”,
“SD”, “WY” not only benefits in terms of fairness across all fairness
intervention settings but also from an accuracy improvement, as
can be seen in Figure 5, which shows how the fairness-accuracy
trade-off is contingent to the underlying data and setting. In general,
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Figure 4: Income Dataset: Difference in disparities w.r.t. SEX sensitive attribute and MAR sensitive attribute between the local fair
model (one model for each client) and three different fair FL methods (PUFFLE, Reweighing and FedMinMax).

Figure 5: Income Dataset: Difference in accuracy between the local fair model and three different fair FL methods (PUFFLE,
Reweighing and FedMinMax).

we observe that, for most clients, locally intervening on intersec-
tional disparities provides a stronger bias mitigation than joining a
federation which intervenes at a global level.

For the ACS employment dataset, we provide additional results
in Appendix C.1. Taking these results into account, some of the

states, such as “UT” or “VT” seem to benefit across most methods,
interventions, and also datasets.

Overall, the disparity reduction achieved by participating in a
fair FL setting is limited to a specific subset of clients in the feder-
ation when compared to a local fair baseline. Figure 5 shows that
more clients benefit in terms of accuracy than in terms of disparity
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Figure 6: Income Dataset: Comparison of disparity benefits from taking part in FL settings with different fairness objectives
across three methods (PUFFLE, Reweighing, and FedMinMax).

Figure 7: Income Dataset: Comparison of accuracy benefits from taking part in FL settings with different fairness objectives
across three methods (PUFFLE, Reweighing and FedMinMax).

reduction. This aligns with findings in [8], where it was shown that
participating in FL without fairness interventions typically provides
stronger accuracy improvements than fairness gains as opposed
to training on local data only. However, the small disparity magni-
tude in our experiments suggests the need to consider a margin of
benefit rather than focusing solely on the absolute difference.

We believe this observation has important implications for fed-
eration formation. Clients who benefit from FL participation tend
to consistently do so across different settings, making them more
likely to join another setting. This is profitable for these clients
as it enables them to compare multiple models from different FL
settings and decide which one to apply in practice to their data.
However, further research is needed to determine if this poses a
threat to the other clients participating in FL settings, especially
when the frequent participants hold large and very specific datasets.
Conversely, the overall benefits of participating in fair FL in terms
of disparity reduction may be less substantial than what institutions
promote when recruiting federation participants. This discrepancy

could lead to clients’ frustration or, even worse, to the application
of a model which is more biased than locally trained fair models.
Therefore, we recommend that, when possible, clients taking part
in fair FL settings compare locally-trained fair models against the
fair FL model. Furthermore, we advocate for clear communication
during the recruitment phase of a federation to ensure that client
needs and expectations are taken into account.

5.2 Joining other Federations is Beneficial
In Figure 6 and Figure 7, we compare the results of the fair FL set-
tings intervening on the SEX attribute with the settings intervening
on the MAR attribute. We highlight the ones benefiting from SEX in-
tervention in light blue and those benefiting from MAR intervention
in light red. Our analysis shows that taking part in an FL setting
with MAR intervention is more beneficial for disparity reduction,
except for the Reweighing method for SEX disparity reduction. An
interesting observation can be made for the PUFFLE method. Here,
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Figure 8: Income Dataset: Comparison of disparity benefits from taking part in clustered FL settings versus mixed FL settings
across three methods (PUFFLE, Reweighing, and FedMinMax).

clients with SEX-related unfairness benefit more from participat-
ing in the FL setting intervening on MAR and vice versa for both
accuracy and disparity.

These results are interesting when considering the initial dis-
parity distribution across clients shown in Figure 2. Clients with
MAR-related unfairness show lower MAR disparity than clients who
are unfair toward SEX show for SEX. The same holds for the other
group of clients. Therefore, we expect SEX intervention to result in
a larger accuracy decrease than MAR intervention since it needs to
mitigate higher disparities. Surprisingly, the opposite occurs, inter-
vention on MAR proves to be more effective in reducing disparities
for MAR and SEX but comes with higher accuracy degradation. This
could be caused by the higher initial MAR disparities among clients
with SEX-related unfairness, suggesting that intervening on MAR
has more influence on their local learning process than vice versa.

We report corresponding results for Employment in Appen-
dix C.2. They follow the same trend with an even clearer indication
that more clients benefit from FL settings intervening on MAR. In
conclusion, clients with SEX-related unfairness achieve better dis-
parity reductions through participating in FL settings intervening
on MAR. However, this is not the case for accuracy improvement.
Here, clients with MAR-related unfairness benefit more from set-
tings intervening on SEX. Altogether, this shows that there can be

a benefit for clients to take part in federations that do not have the
client’s objectives as a goal. We believe that these outcomes can be
related to the initial data distributions and the relationship between
the two sensitive attributes SEX and MAR. However, further analysis
is needed to examine this hypothesis.

5.3 Client Clustering Improves Fairness
In Figure 8, we compare the performances of the clustered federa-
tion. In this experiment, clients are divided into two clusters based
on their fairness objectives. This results in training two separate
models: one for the first cluster, reducing the unfairness towards
SEX, and another for the second cluster, reducing unfairness to-
wards MAR. The results show that clustering benefits the fairness
of the individual clients. Specifically, clustering not only improves
the disparity for the attribute that is intervened upon (SEX for the
blue clients, MAR for the red clients) but is also beneficial for the
sensitive attribute, which is not intervened upon.

In terms of accuracy, Figure 9 shows a slight degradation when
using the clustering approach. This trade-off matches our expecta-
tions: improvements on the fairness metric may come at the cost of
accuracy. Results for ACS Employment are shown in Appendix C.3.

Altogether, we find that clustering the clients in a federation with
respect to their fairness objective can be an off-the-shelf solution
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Figure 9: Income Dataset: Comparison of accuracy benefits from taking part in clustered FL settings versus mixed FL settings
across three methods (PUFFLE, Reweighing, and FedMinMax).

to improve fairness. Here, the goal is to train an individual model
incorporating the objectives of each cluster for each cluster. As
clusters are created after the initial federation is found, this method
heavily relies on clients being aware of the bias encoded in their data
and therefore, their objectives. Also, to form these clusters, clients
need to reveal highly sensitive information and statistics about their
local data. Additionally, this methodology comes with higher costs
for the central server as multiple models are trained and need to be
aggregated. Hence, this highlights the need for custom strategies
which preserve the privacy of each client’s sensitive information
and data, reduce computational cost and enhance the potential of
fair FL settings when clients hold multiple different objectives.

6 Future Directions and Conclusion
This study evaluates the benefits for individual clients participating
in fair FL settings with varying objectives. We focus on scenarios
where clients hold data biased toward different sensitive attributes,
reflecting real-world FL challenges. A key question that will be
explored in further research is how federations where clients are
biased toward the same sensitive attribute but different attribute
values behave. Our work considers binary sensitive attributes, as
they dominate current fair FL methods [33]. Further investigation
is needed to understand the benefits of Fair FL methods when
applied to non-binary sensitive attributes. Understanding whether
the patterns observed in this paper hold in that scenario could
significantly broaden the impact and applicability of these methods.

Our findings reveal that while individual clients exhibit consis-
tent patterns in benefiting from fairness-aware federations across
different metrics and methods, locally trained fair models often
yield greater benefits. We recommend that locally trained fair mod-
els should always be considered as a baseline at the client level as
well as to provide support on how to train these models to clients
who are unfamiliar with fairness mitigation techniques. Addition-
ally, we emphasise the importance of transparent communication
during the recruitment phase of a federation. This ensures that
client needs and expectations are considered, leading to outcomes
in the FL setting that are perceived as more rewarding and equitable.

For the methods and datasets analysed, most clients benefit more
from joining federations which intervene on the sensitive attribute
MAR instead of SEX, likely because of data and bias distribution
among clients. However, broader experimentation with additional
datasets, distributions and a larger client pool is necessary to de-
termine the relationship between clients’ local data and benefits
derived from joining a specific federation. Overall, we encourage
clients to join FL settings with objectives that differ from their own
to potentially benefit from these.

Finally, we highlight how clustering can be a simple yet effective
solution formanaging disparity distribution across various sensitive
attributes in a federation. However, privacy concerns often limit the
information sharing needed for cluster formation. This underscores
the need for custom strategies to reach the full potential of fair FL
settings while respecting privacy requirements.
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Figure 10: Demographic Parity computed on the ACS Employ-
ment dataset of the 20 clients selected in the FL computation.

A Hyperparameter Tuning
To perform hyperparameter tuning when using PUFFLE, we fol-
lowed the authors’ suggestions reported in the paper [11]. There-
fore, we performed a Bayesian optimisation in order to minimise
the model validation accuracy while keeping the model unfairness
under a target 𝑇 = 0.05. The parameters that we optimised are:
Learning Rate, Batch Size, optimiser, number of local epochs, and
the value of the 𝜆 used for the unfairnessmitigation.We performed a
similar hyperparameter tuning for Reweighing [1]. We searched for
the hyperparameters able to maximise the model accuracy while
staying under 𝑇 = 0.05. The parameters that we optimised are:
Learning Rate, Batch Size, Optimiser, and number of local epochs.

For FedMinMax [30], we tuned the hyperparameters with the
code provided by the paper’s authors (https://github.com/oscardilley/
federated-fairness). Learning rate as well as adverse learning rate
were optimised by applying a grid search over all combinations of
[0.002, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0]. The final goal was to optimise the
Equation 3 reported in Section 4.3. We applied the model which
showed the best accuracy while having an aggregated disparity
smaller than 0.1.

B Preprocessing
In Figure 10, we report the Demographic Parity of the 20 clients
used to train the models when using the ACS Employment dataset.
As we did with ACS Income, we artificially made the clients unfair
toward MAR and SEX attributes to exacerbate the unfairness. As you
can see in Figure 10, the first 10 clients of the ACS Employment
dataset have a higher disparity for the MAR sensitive attribute than
the SEX sensitive attribute. For the last group of 10 clients, instead
you can see the opposite scenario with predominant unfairness
toward the SEX attribute.

C Additional Results
In this Section, we provide detailed results on the ACS Employment
dataset. As we observed similar results for the ACS income dataset,
we will only provide a short addition to the statements provided in
Section 5.

C.1 Benefits and Harms of the Federation
In Figure 12, we show the comparison of a local baseline without
fairness interventions to a local fair baseline, PUFFLE, FedMinMax,
and Reweighing for the ACS employment dataset. Clients high-
lighted in grey show an improved metric by participation in the

specified settings. We observe that all unfair clients toward the
attribute SEX benefit from reduced disparity scores with regard to
SEX across six out of seven methods (first row in Figure 12). The
same is observed for clients who hold data biased toward the MAR
attribute. These clients are ranked consistently at higher positions
if any benefit is observed. In terms of accuracy, Figure 13 shows
no improvements, aligning with the well-known trade-off between
fairness and accuracy.

For the comparison between local fair models to the fair FL set-
tings for each client, we refer to Figure 14. Here, for clients unfair
with regard to MAR we can observe a benefit for five out of six
methods in reducing the disparity for the attribute SEX. Concerning
the SEX attribute, the subgroup UT, WV, SD, WY, and WI benefit
from improved disparity whenever improvements are observed. In
the second row, clients from VT, RO, PA, and UT show fairness
improvements. In Figure 15, we show that sometimes small accu-
racy benefits exist when taking part in fair FL settings opposed to
learning a fair local model.

C.2 Joining other Federations is Beneficial
In Figure 16 and Figure 17, we show results from comparing the
settings which intervene on the SEX attribute with the settings
that intervene on the MAR attribute. Clients benefiting from taking
part in an FL setting which intervenes on the sensitive attribute
SEX are highlighted in light blue, and clients benefiting from an
FL setting with intervention on MAR are highlighted in light red.
Concerning disparity, in five out of six methods, clients benefit
more when taking part in the settings which intervene on MAR. For
accuracy, there is no trend across methods. In Figure 10, we show
the disparities before training on the client level. Here, clients who
are unfair toward SEX still have a high disparity for the attribute
MAR. We believe that this initial data distribution is the reason why
intervening on MAR has a stronger beneficial influence on reducing
disparities for the blue group of clients. Reducing disparity for the
MAR attribute is also a reasonable objective for the blue clients and
seems to have the side effect that disparities for the attribute SEX
are reduced as well.

C.3 Client Clustering improves Fairness
In Figure 18, we analyse the performance of a clustering-based
federation, where clients are grouped according to their fairness
objectives, in comparison to mixed federations. In this experiment,
clients are divided into two clusters based on their fairness ob-
jectives. This results in training two separate models: one for the
first cluster, reducing the unfairness towards SEX, and another for
the second cluster, reducing unfairness towards MAR. The results
demonstrate that clustering enhances fairness for clients in the clus-
ter with the objective to enhance fairness for the attribute SEX (this
is equal to intervening on the attribute SEX). For the cluster which
trains a model intervening on MAR, we do not see an improvement
of the disparity with respect to MAR.

Regarding accuracy, Figure 19 reveals a slight improvementwhen
adopting the clustering strategy.
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Figure 11: Income Dataset: Difference in accuracy between the baseline local models and four different fairness mitigation
strategies (local fair model, PUFFLE, Reweighing and FedMinMax).

Figure 12: Employment Dataset: Difference in disparities w.r.t. SEX sensitive attribute and MAR sensitive attribute between the
baseline local model (one model for each client) and four different fairness mitigation strategies (local fair model, PUFFLE,
Reweighing and FedMinMax).
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Figure 13: Employment Dataset: Difference in accuracy between the baseline local models and four different fairness mitigation
strategies (local fair model, PUFFLE, Reweighing and FedMinMax).

Figure 14: Employment Dataset: Difference in disparities w.r.t. SEX sensitive attribute and MAR sensitive attribute between the
local fair model (one model for each client) and three different fair FL methods (PUFFLE, Reweighing and FedMinMax).
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Figure 15: Employment Dataset: Difference in accuracy between the local fair model (one model for each client) and three
different fair FL methods (PUFFLE, Reweighing and FedMinMax).

Figure 16: Employment Dataset: Comparison of disparity benefits from taking part in FL settings with different fairness
objectives across three methods (PUFFLE, Reweighing and FedMinMax)
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Figure 17: Employment Dataset: Comparison of accuracy benefits from taking part in FL settings with different fairness
objectives across three methods (PUFFLE, Reweighing and FedMinMax)

Figure 18: Employment Dataset: Comparison of disparity benefits from taking part in clustered FL settings versus mixed FL
settings across three methods (PUFFLE, Reweighing and FedMinMax).
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Figure 19: Employment Dataset: Comparison of accuracy benefits from taking part in clustered FL settings versus mixed FL
settings across three methods (PUFFLE, Reweighing and FedMinMax).
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